UBICOMP/ISWC '17 ADJUNCT, SEPTEMBER 11-15, 2017, MAUI, HAWAII, USA

People’s Interruptibility in-the-wild:
Analysis of Breakpoint Detection
Model in a Large-Scale Study

Tadashi Okoshi

Graduate School of Media and
Governance, Keio University
5322 Endo, Fujisawa
Kanagawa, 252-0882, JAPAN
slash@ht.sfc.keio.ac.jp

Kota Tsubouchi

Yahoo Japan Corporation
1-3 Kioicho, Chiyoda-ku,
Tokyo 102-8282, JAPAN
ktsubouc@yahoo-corp.jp

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).

UbiComp/ISWC’17 Adjunct , September 11-15, 2017, Maui, HI, USA
ACM 978-1-4503-5190-4/17/09.
https://doi.org/10.1145/3123024.3124556

922

Abstract

In the advancing ubiquitous computing where users have
been having an increasing amount of push-style informa-
tion provision from lots of intelligent proactive services,
detecting the users’ current attentional status and/or in-
terruptibility has been a significant issue. In our previous
study[7] on interruptibility detection in “Yahoo! JAPAN” real
world product for 21 days with more than 680,000 users,
the result showed significant lower user response time in
exchange for notification delivery delay for about 4 minutes
on average. In this paper, we further analyze the features
in the interruptibility detection model trained and updated
during this study in nightly basis for 21 days and report the
results.

Author Keywords
ubiquitous computing; attention; interruptibility; research
community; opportunities

ACM Classification Keywords
H.3.4 [User profiles and alert services]: Systems and Soft-
ware

Introduction

The amount of information available for consumption has
been growing by several orders of magnitude, while the ca-
pacity of our attention as humans is constant. For better

https://doi.org/10.1145/3123024.3124556

UBICOMP/ISWC 17 ADJUNCT, SEPTEMBER 11-15, 2017, MAUI, HAWAII, USA

timeliness and speediness, provision of information from
versatile types of applications and services have been be-
coming more proactive. Delivery of such proactive informa-
tion is is often done through push notification systems. In
this information-overload world, the constant and limited ca-
pacity of human attention has become a new bottleneck [2]
in computing. Various past literatures already revealed the
negative effects caused by divided attention, usually caused
by the push notifications, in terms of productivity, emotion,
and mental state [3, 11, 10, 1].

In recent ubiquitous computing research, researchers have
been investigating users’ interruptibility with different tech-
niques and actual detection targets, such as breakpoint [4],
interruptibility, and boredom [8, 5, 9].

Based on our past research results on real-time breakpoint
on mobile and wearable devices in ubiquitous computing
situations [5, 6], our next significant research motivation
was to investigate if such methodology actually works effec-
tively in the real world environment. We design and imple-
mented the same interruptibility detection and notification
scheduling in “Yahoo JAPAN” Android application ', one

of the most popular Android applications in the Japanese
market with more than 10 million install base. Results from
our large-scale user study with 687,840 users for 21 days
revealed that, in exchange for average notification delivery
delay of 4 minutes due until an immediate detected break-
point, users’ response time to the delivered notification is
significantly reduced (49.7%). The analysis also revealed
higher click rate and user engagement level throughout the
entire study period.

In this paper, we particularly focus on the breakpoint detec-
tion model that was trained and periodically updated during

"https://promo-mobile.yahoo.co.jp/yjapp/

923

the user study. Before the user study was initiated, an initial
breakpoint detection model was trained in our initial small
model-training experiment with 39 devices for 35 days. That
initial model was installed into all the user’s smartphone at
Day 1 of the user study. Once the user study was began,
logs from all the clients were sent to our server and a new
model was trained and delivered to all the clients in nightly
basis. Thus, throughout the 21 days of the study, every day
users used a new model that was just trained last night. In
this paper, we investigate deeply inside such model of the
study and evaluate them whether the created model are
updated intuitively or not.

System Architecture

Figure 1 shows the architecture of our production system
[7]. Our implementation consists of a series of additional
components inside the Yahoo! JAPAN Android application
as well as the components on the server side.

The Mobile Sensing component obtains several types of
sensor data, including that from the GooglePlay Service
Location APl ActivityRecognition and other device-
related data. The data mainly consists of a series of output
values from the GooglePlay Service Location API’s “Activi-
tyRecognition” and other device-based events (e.g., screen
on/off events). On the activity recognition results from “Ac-
tivityRecognition”, we used data only with a confidence
value greater than 51 (the value can be between 0 and 100)
based on our empirical knowledge. The mobile sensing
component obtains all of these data through individually im-
plemented event handlers for each sensor. Any changes

in sensor data, such as when the user’s activity changes

or when the device volume is changed, will be sensed and
logged by the system.

=

[Notification

Yahoo! JAPAN
Android app

Additional
component Controller
= 7)

—
request
Core breakpoint Push Fetch |4 71 Service logic Service data
detection Prediction ush content

(true|false)

Hadoop cluster
(32 workers)

Predictor
Feature values Model — [€ 15 0o || Model

Model new model|
| Feature extractor ‘ downloader!

Model trainer

LMOG el server
»

check

fSensor data fFeatures
| Mobile sensing J | Logger] .[Log server |LOg | Feature extractor
| Upload logs|
S
| sensors Android OS |
Client side Server side

Figure 1: System Architecture

When new sensor data is detected, the Feature Extrac-
tor and Predictor modules execute and predict if the cur-
rent moment is a breakpoint of the user. The total num-

ber of features is 387. The system extracts seven types of
features: timestamp (hour), activity type, volume, device
sleep/awake status, vibration status, silent mode setting,
and network connection type. In addition to these sensor
values, transition of the sensor data is introduced as an
eighth type of feature. For all possible “From” and “To” pairs
of sensor status transition, we prepared a dedicated fea-
ture value. To detect breakpoints that occur in the timings of
activity change (e.g., “tilt"ing their phone from the “still” sta-
tus), these transition type features are helpful for the system
to characterize changes detected in each sensor.

Using the above features, the actual breakpoint prediction

924

SESSION: UBITTENTION

is executed in Predictor with an installed linear regression
model. The model parameters are generated on the server
side and then downloaded to the clients.

The log data along with the ground truth annotation will be
sent to the server nightly. At the server side, every night

a new model is built from all the data uploaded from the
clients in the past. The resulting model’s parameter will be
available on the Model Server and will be downloaded to
the clients on a daily basis. This scheme of the periodic
model update and distribution nicely fits our system design
requirement that modification in the production client soft-
ware need to be minimized.

Experiment Overview

On the basis of promising results from our initial study [7],
we conducted a large-scale in-the-wild user study in the
production environment with 687,840 users for three weeks
to better understand how our breakpoint-based notification
scheduling works in a real user environment.

The user study was conducted for three weeks (21 days) in
September 2016. To ensure the stability of the production
application, the new version (including our implementation)
was released to the production environment with a grad-
uated deployment scheme on the app store. After three
days, the new version was made available for all users.

As written in our previous paper [7], we found through ex-
periment that, in most cases, notification delivery delay due
to breakpoint detection does not hurt and even improves

a user’s overall click timing (earlier), with significantly re-
duced user response time (49.7%). We also observed a
continuous increase in content click numbers and user en-
gagement level over the entire study period.

UBICOMP/ISWC 17 ADJUNCT, SEPTEMBER 11-15, 2017, MAUI, HAWAII, USA

Further Analysis of Model

In this paper, we further investigated the model updated
daily in the above experiments in more detail. The model

is an array composed of the weight in each of the 387 fea-
tures extracted from the sensor data and device configura-
tion. The breakpoint detection is judged by the linear sum
of the weights of the features at the present time obtained
from the user’s smartphone. Therefore, the larger the value
of the weight means, the more the features of the object is
effective information for judging breakpoint.

Transition of Weight Values

Fig.2 shows the weight score of each feature during the 21
days of the experiment. The X axis shows the number of
days elapsed since the start of the experiment, while the Y
axis the weight score of each feature. The days with orange
background color represent holidays, while the others indi-
cate week days. At Day 1 (X=0), the initial model the users
used was a preliminary model previously trained from the
data collected from 39 subjects beforehand.

The following two considerations are described in the result
of the transition of the weight score shown above. The first
point is that the weight scores of almost all features are sat-
urated in about beginning 3 days. While some scores keep
increasing or decreasing gradually, many of them tend to
settle around 3 days after the start of the experiment. Even
though it goes up and down depending on the day, the ba-
sic relationships and tendency among different features
tend to be preserved. As the number of users is as large as
about 340,000 people (for the experimental group), it turns
out that the model has stabilized in a small experiment pe-
riod.

The second point is differences between weekdays and hol-
idays. The absolute value of the weight score of each fea-
ture tends to be large on holidays. Also, the ranking (order)

925

The weight value of each features

-4

0 9 10 15 20 25

-6

Experimental Day

Figure 2: Transition of the weight values

of features tend do change in many holiday cases. We con-
sider that these facts indicate (1) the model gets unstable
and (2) some additional different training data have been
added to the model. From this analysis, we conclude that,
in the future experiment, it is better to separate the model
into two different models, namely one for weekdays and
another for holidays.

Weight Value Changes Over Study Period

Table 1 shows the difference in the weight value between
the first day and the last day of the experiment. The “vol-
ume” means the volume that the user selected for the ring-
tone of the smartphone. The upper table shows the top 10
features whose weight value increased from the first day to
the last day, and the lower table shows the features of top

10 whose weight value decreased.

Figure 3: Breakdown of
“True”-labeled Detected
Breakpoints into Activity Changes.

data from to dif. of score
volume 3 4 4.222
volume 1 0 (silent) 3.745
volume 1 2 3.477
volume 6 7 (max) 3.211
activity STILL TILTING 3.195
To activity TILTING UNKNOWN 3.186
AlBlclIDlEIF activity UNKNOWN STILL 3.178
activity UNKNOWN ON_FOOT 3.170
A 001 |0.22 (6.05 [0.99 |2.71 volume 2 1 3.158
B 003 001 |0.32 [0.01 [0.09 volurne s b 5119
0.48 |0 2.68 |0.28 |1.29
g - e data from to dif. of score
T
L [D |816 006 [1.75 742|433 activity IN_VEHICLE IN_VEHICLE -4.713
E los4 [000 |0.19 [351 150 activity ON_BICYCLE ON_BICYCLE -4.560
trigger none volume -4 407
F [263 o2 [18611.27 activity UNKNOWN UNKNOWN 4350
activity TILTING TILTING -3.583
A: ON_VEHICLE activity ON_FOOT ON_FOOT -3.391
B: ON_BICYCLE trigger none others -2.603
g: (S)-lNI_LIT_OOT trigger none activity -2.424
: network WIFI WIFI -1.713
B2 UNKNCOWN t k LTE LTE 1.624
F: TILTING L —

Table 1: The Difference in the Weight Value between the First Day
and the Last Day. We can confirm the feature transition from one
value to itself, e.g. "from LTE to LTE". It shows that the other factor
such as activity mode was change, then the feature value of "from
LTE to LTE" become "1".

On the upper table, we can see that increment of the weight

score for the timing at which the user changes the vol-
ume of the smartphone and the timing at which the activity

926

SESSION: UBITTENTION

changes is large. It is an intuitive result that the increment
of the weight score is larger when increasing the sound,
such as volume 3 to volume 4, rather than decreasing the
sound as to change the volume from 3 to 2, for example.
When the user reduces the sound, we consider that the
user’s attention is often leaving from the smartphone, for
example by starting the office work or other intensive activ-
ities. Also, Fig3 shows a breakdown list of detected break-
points with “true” annotation (i.e., breakpoints with a notifi-
cation that was clicked by the user within 10 seconds) into
activity change pairs. Very interestingly, the features related
to the activity in which the increment of the feature weight
score was large, which is the state changed from STILL to
TILTING, is a features which was also confirmed in “True”-
labeled Detected Breakpoints.

On the contrary, the bottom table shows a list of features
whose weight score has been greatly reduced. Everything
listed in the table are features that does not show behavior
or state transition. In other words, the models have been
updated gradually no to classify cases without any activity
changes as breakpoints. This result is also very intuitive.

Conclusion

We investigated deeply inside calculated model of break-
point detection and evaluated the model whether it is up-
dated intuitively or not. As a result of the verification, the
results of the following three points were clarified.

» Thanks to the huge number of log data obtained from
the enormous number of users, it only takes about
several days for the model to stabilize.

» Models learned from log data containing both week-
days and holidays has become unstable. Therefore,
the model should be generated and used respectively
for weekdays and holidays.

UBICOMP/ISWC 17 ADJUNCT, SEPTEMBER 11-15, 2017, MAUI, HAWAII, USA

» From the investigation on features whose score in-
creased and decreased over the study period, we can
conclude that the actual generated model was with
quite intuitive feature construction.

REFERENCES

1.

Mary Czerwinski, Edward Cutrell, and Eric Horvitz.
2000. Instant messaging: Effects of relevance and
timing. In People and computers XIV: Proceedings of
HCI, Vol. 2. British Computer Society, 71-76.

D. Garlan, D.P. Siewiorek, A. Smailagic, and P.
Steenkiste. 2002. Project Aura: toward distraction-free
pervasive computing. Pervasive Computing, IEEE 1, 2
(april-june 2002), 22 —31. DOI:
http://dx.doi.org/10.1109/MPRV.2002.1012334

J. G. Kreifeldt and M. E. McCarthy. 1981. Interruption
as a test of the user-computer interface. In JPL
Proceeding of the 17 th Annual Conference on Manual
Control. 655-667.

Darren Newtson and Gretchen Engquist. 1976. The
perceptual organization of ongoing behavior. Journal of
Experimental Social Psychology 12,5 (1976),
436-450.

Tadashi Okoshi, Julian Ramos, Hiroki Nozaki, Jin
Nakazawa, Anind K. Dey, and Hideyuki Tokuda. 2015a.
Attelia: Reducing User’s Cognitive Load due to
Interruptive Notifications on Smart Phones. In
Proceedings of IEEE International Conference on
Pervasive Computing and Communications 2015
(PerCom ’15).

Tadashi Okoshi, Julian Ramos, Hiroki Nozaki, Jin
Nakazawa, Anind K. Dey, and Hideyuki Tokuda. 2015b.

Reducing Users’ Perceived Mental Effort Due to
Interruptive Notifications in Multi-device Mobile

927

10.

11.

Environments. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp ’15). 475-486.

Tadashi Okoshi, Kota Tsubouchi, Masaya Taji, Takanori
Ichikawa, and Hideyuki Tokuda. 2017. Attention and
engagement-awareness in the wild: A large-scale study
with adaptive notifications. In Proceedings of 12017
IEEE International Conference on Pervasive
Computing and Communications (PerCom 2017).
100-110. DOI:
http://dx.doi.org/10.1109/PERCOM. 2017 .7917856

Veljko Pejovic and Mirco Musolesi. 2014. InterruptMe :
Designing Intelligent Prompting Mechanisms for
Pervasive Applications. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp ’14). ACM, New York,
NY, USA, 395-906. DOI:
http://dx.doi.org/10.1145/2493432.2493445

Martin Pielot, Tilman Dingler, Jose San Pedro, and
Nuria Oliver. 2015. When Attention is Not Scarce -
Detecting Boredom from Mobile Phone Usage. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing
(UbiComp ’15). 825-836.

Cheri Speier, Joseph S Valacich, and Iris Vessey. 1999.
The influence of task interruption on individual decision
making: An information overload perspective. Decision
Sciences 30, 2 (1999), 337-360.

Fred RH Zijlstra, Robert A Roe, Anna B Leonora, and
Irene Krediet. 1999. Temporal factors in mental work:
Effects of interrupted activities. Journal of Occupational
and Organizational Psychology 72, 2 (1999), 163—185.

http://dx.doi.org/10.1109/MPRV.2002.1012334
http://dx.doi.org/10.1109/PERCOM.2017.7917856
http://dx.doi.org/10.1145/2493432.2493445

	Introduction
	System Architecture
	Experiment Overview
	Further Analysis of Model
	Transition of Weight Values
	Weight Value Changes Over Study Period

	Conclusion
	REFERENCES

