
People,
Organizations,
and Process
hnprovement
DEWAYAJE E . PERRY, AT&T Bell Laboratories
NANCY A. STAUDENMAYER ,
MIT Sloan School of Management
LAWRENCE G. VOTTA, AT&T Bell Laboratories

I) In their efforxc to determine T o understand the prerequisite to genuinely understand-

bow technology affects process,
processes by which we build large soft- ing development processes. Without
ware systems, we must consider the that understanding we cannot hope to

researchers often overlook larger development picture, which significantly improve these processes

organizational and social issues.
encompasses organizational and social and justify their improvement.
as well as technological factors. The In this article, we describe two

The authors report on two software community pays too much experiments that are the first in a series
attention to the technological aspects to enhance our understanding of the

experiments to discover bow of software development at the expense structure of software-development
of these other contexts. One often-

developers spend their time.
processes, with the goal of reducing

cited reason is the difficulty of quanti- the process-development interval. The

They describe bow noncoding tatively measuring people factors. We first experiment was to see how pro-
don’t see this as a valid argument. grammers thought they spent their

activities can use up development What is often assumed to be qualita- time by having them fill out a modified

time and bow even a relzcctance
tive, such as social interactions, can time card reporting their activities,
often be quantified. We also believe which we called a time diary. In the

to use e-mail can influence the that a holistic measurement-based second experiment, we used direct
approach that encompasses all the rele- observation to calibrate and validate

development process. vant contexts - both technological the use of time diaries, which helped us
and social and organizational - is a / evaluate how time was actually being

36 0740-7459/94/$04.00 0 1994 IEEE JULY 1994

spent. We found both techniques use-
ful in quantifying the effect of social
processes, and we gamed several signif-
icant insights about existing processes.

SPECIAL MEASUREMENT CONCERNS

In both experiments, we studied
software-development processes in
action by observing what people do.
We encountered several special issues:

+ Protecting the anonymity of study
participants, or subjects, and mini-
mizing interference with their work.

+ Documenting the the study site.
+ Selecting the study sample.
+ Choosing the instrumentation

and levels of resolution.

Experimenting with people who work.
People being observed as part of a
study have understandable concerns
about how the information will be
used and who will see it. Anonymity
and confidentiality are of the utmost
importance - careers may even be at
stake! You must also ensure that the
study does not interfere with normal
work. We were aware that some peo-
ple might be uncomfortable about par-
ticipating in our experiments, so we
spent considerable time beforehand
explaining the purpose of the studies.
We reminded the subjects that there
are no right and wrong ways to work;
our purpose was not to judge but to
understand behavior within a given
environment.

We entered all data under an ID
code known only to the researchers.
We also gave each subject a list of
rights, including the right to tem-
porarily discontinue participation at
any time, to withdraw from the study,
to examine the research notes, and to
ask us not to record something. Not
one of our subjects exercised these
rights, but it made them more com-
fortable knowing they were there.

Documenting the study site. Software-
development organizations come in
many shapes and sizes with distinct

cultures and vastly different products.
To make it easier to compare results
across studies, researchers must get in
the habit of clearly delineating the
principle dimensions of the organiza-
tion, its process, and the supporting
technology.

New hardware and soft-
ware functions are add-
ed every 15 months or so.

The subjects in our experiments
build software for a real-time switch-
ing system consisting of more than 10
million noncommented lines of C
code, divided into 41 subsystems.

collect as much-infor-
DATA ON REAL mation as possible on ~1

USERS, EVEN the sample subjects
and then control for

IF THE SAMPLE various effects in your

Project management
was interested in tracking
features, the units of
functionality a customer
will pay for. Feature size
varies from a few lines of
noncommented code
with no new hardware

apply to many settings and samples.
On the other, you need to control the
boundaries to eliminate the possibility
of random errors and improve the
validity of the results. The researcher
must ultimately decide which extrane-
ous variables are most important to
control for, and there is no standard
way to do this. You must rely on judg-
ment, study prior research, and deter-
mine available resources. One way to
avoid facing these control issues until

late in the study is to

IS SMALL, IS
REVEALING.

analysis.
We applied a pup

ive sampling scheme
- in which subjects
or cases typical of the

required to 50,000 lines of noncom-
mented code with many complex, spe-
cially designed hardware circuits.
Generally, a developer works on no
more than two features at once. Most
software is built using a real-time
operating system.

The organization responsible for
product development has approxi-
mately 3,000 software and SO0 hard-
ware developers. It is registered to the
International Organization for
Standardization’s IS0 9001 standard
and has been assessed at level 2 on the
Software Engineering Institute’s
Capability Maturity Model.

The purpose of documenting an
organization’s dimensions is to pro-
vide boundaries for the results of the
study. We are not attempting to claim
that our results generalize to all orga-
nizations. On the contrary, the rela-
tive size, complexity, and maturity of
this software system are inextricably
associated with its process.

Sale&g the sample. A trade-off always
exists between minimizing the possi-
ble variance and maximizing the abili-
ty to generalize a study’s findings. On
the one hand, you want results to

IEEE SOFTWARE

target population are selected -
choosing subjects at random yet strati-
fying along significant dimensions.
We felt that project (organization,
phase, and type) and personnel (age,
gender, race, individual personality,
and years of experience) factors were
the most important to control for.
Our goal was not to conduct a com-
parative study but to obtain a broad
base of observations, thereby decreas-
ing the likelihood of idiosyncrasies in
our findings.

We realize that our sample sizes
are small and probably inadequate for
statistical validity but, as Fred Brooks
pointed out “any data is better than
none.“’ This work falls within the sec-
ond category of nested results Brooks
cites as necessary and desirable for
progress in software development:
reports of facts on real user behavior,
even though that behavior is observed
in undercontrolled, limited samples.

Choosing instrumentation and resolution
level. Finally, there is the question of
instrumentation. How do you get the
data and at what resolution? Resolution
- the level of analysis and frequency of
sampling - is a fundamental concern in

37

iI
II anv decision to measure processes and
li deiermine cost-benefit trahe-offs.
/~ As we mentioned earlier, our goal
’ was to understand the structure of soft-

ware-development processes. To
~~ accomplish this, we used a model that

views development processes as com-
plex queuing networks. In most soft-
ware projects, there is a large discrepan-
cy between race time - time spent in
actual work - and elapsed time. Race
time expands to elapsed time when
there are interruptions, blocking (some
obstacle to continuing work), and wait-
ing periods. Lf’e wanted to document
the factors that inhibited progress and
their effect on overall development

time. 1Ve considered several methods of
data collection before settling on time
diaries and direct observation.

A standard tool in behavioral science
is the retrospective one-time survey
questionnaire. However, this method
tends to provide a relatively flat, static
view of the development process, and
we were interested in the dynamic
behavior of people performing highly
interdependent tasks. Hence we chose
to design a modified time card - a time
diary - and asked developers to record
their daily activities over 12 months.

To calibrate the accuracy of the time
diaries, we needed an instrument that
would give us a finer resolution than

/)i i WHY MEASURE PEOPLE FACTORS?

In 197.5, Fred Brooks
described software construc-
tion as “an exercise in com-
plex (human) interrelation-
ships.“’ Yet almost 20 years
later, most improvement
exercises are still focusing
on the technological aspects
of building software systems
- the tools, techniques and
languages people use to
write the software.
Relatively little systematic
study has been done about
the associated people issues:
how to ensure accurate and
effective communication
about a product no one can
see, how to maintain project
motivation and how to keep
focused despite obstacles
and distractions. Although
many articles have addressed
the importance of such
issues, few have conducted
systematic investigations
about their operation in
software development

We believe there are
three reasons to emphasize
the organizational and social

context of software processes.
+ Even in the most tool-

intensive parts of the process,
such as the system-build
process, the human element
is critical and dominant.
While the efficiency and
appropriateness of the tools
are obviously important, the
crucial job of tracking down
sources of inconsistency and
negotiating their resolution
is performed by people.

4 Numerous process
studies have indicated a large
amount of unexplained vari-
ance in performance, sug-
gesting that significant
aspects of the process are
independent of the technol-
ogy. You could even argue
that continually introducing
more and more sophisticated
tools is responsible for what
Brooks calls the “tool mas-
tery burden,“l which itself
conaibutes to performance
variance. Moreover, all too
often tools are designed in
isolation and subsequently
fail to achieve their promised

was possible with time diaries. One
option was video cameras. Although
there are experimental precedents, we
felt it would be inappropriate because
our study subjects would not be used to
such intrusiveness. Lis%ile they were
fairly receptive to the notion of patici-
pating in experiments, the introduction
of video equipment would have distort-
ed their behavior (not to mention that
of their peers and overall work
progress). ;Uso, we would have to watch
and interpret more than 300 hours of
videotape, which would add both cost
and time to the experiment. Finally, we
were interested in getting data about
~hy developers used their time the way

potential once in use.
Genuine advarlf ij in tools
and languages ! !lust be
accompanied I~:, J considera-
tion as to how t 112 technolo-
gy w-ill be incorporated into
the existing social and orga-
nizational infrastructure.

4 Several prominent
authors have noted that
much of a project’s effort is
devoted to issues outside
programming; both Brooks
and Barry Boehm estimate
that as much as half a pro-
grammer’s time is absorbed
by machine downtime, meet-
ings, paperwork, and miscel-
laneous company business.‘,’
If only half the time is spent
programming, and technical
advances are not making a
big difference in productivi-
ty, perhaps we need to look
elsewhere for ways to
improve the development
process.

These three reasons give
rise to the need for new mea-
sures, iterative exercises that
increaseunderstanding

through the use ofsignificant
measures, and the recogni-
tion that this iteration is a
prerequisite to assessing and
justi@ing process improve-
ments.

More efl ective measures.
Because so&are develop-
ment yields a collaborative,
intellectual - as opposed to
physical - output, tech-
niques to measure it must be
both creative and carefully
considered. In addition, the
pace of technological and
market changes and con-
stantly shifting organiza-
tional structures, mean that
we must regularly reevaluate
our assumptions about
development processes. A
changing environment may
render old assumptions
invalid. For example, a nar-
row technical focus can gen-
erate many myths, such as
“developers don’t like to be
(and, hence, cannot be)
observed” and “program-
ming is an isolated

38 JULY 1994

thev did - why they made certain
choices and how they decided among
competing demands on their time.
With video, we would not have been
able to ask the subjects about their
choices as they were making them.
Given these drawbacks, we decided to
use direct observation - we watched a
sample of participants as they worked.

Figure 1 illustrates how the resolu-
tion of the time diary contrasts to that
of direct observation. Observer-record-
ed data contains an impressive amount
of micro-level detail, often down to
three-minute intervals. To effectively
compare it with time diaries, we sum-
marized that detail into major activity

w Observer’s notes
08OMM Warhgon high-level 0800-0908 Administration

desian 0900-1010 High-level design analysis
1010-1021 Break
1021-l 135 Code experiment with peer

I 1135-l 226 High-level design document writing
1226-1314 lunch in cafeteria
1314-1330 Answer document question (responsible person out)
1330-l 349 Answer growth question
1349-1406 Reading resuhs of Business Unit Survey
1406-1500 Code experiment with peer
1500-l 626 Searching for papar and reading
1626-1701 Code experiment with peer
1701-1705 AdmhlstrotioR

Figure 1. Sample comparison sheet comparing a sojhare developer’s self-reported
time dialy with the obser‘qer? notes. This sheet is typical of the calibration. The dif
ference h end time between the dialy and the obsenter’s notes is appY-oximately 55
minutes. The diary contains one entry for this nine- to IO-hour- day. The observer,
on the other band-has 13 entries, aboutjue hours of zbicb correspond to high-lez>el
design actizjities.

activity.“j
Another reason for regu-

lar reevaluation is that there
are not enough studies that
address practical ways to
handle new problems. Most
studies that investigate pro-
gramming’s human aspects
rely primarily on student
programmers or artificial
tasks in laboratory settings.4
Although these studies are
informative, we question
how useful they are in large-
scale development. How
representative are the sam-
ples and tasks? What kinds
of problems unique to orga-
nizational environments are
being ignored by this focus
on small and artificial
domains?

ItmHve exercises Answer-
ing the question of what to
measure is an iterative exer-
cise that increases your
understanding of the process
and helps yvu transform that
understanding into practical
steps toward improvement

As a performer and observer
of processes, you have some
intuition about where prob-
lems lie. For example, if you
see that progress is often
blocked, the obvious thing
to measure is what is block-
ing it. If meetings appear to
be significantly impeding
progress, it is logical to mea-
sure the number, duration,
and effectiveness of meet-
ings to understand their
effect on process and perfor-
mance.

This is the beginning of
the iterative exercise. You
use your understanding to
determine what measures to
take and then use the results
of those measures to con-
firm or deny your hypotbe-
ses. An important part of
this exercise is not letting
preconceptions interfere
with the possible insights to
be gained from the measure-
meas

claims are based on anecdotal
evidence or rea~.,nably plausi-
ble arguments. \ \hile these
may give some C, mfort, they
do not constitute a quantifi-
able basis for claiming
improvement. The under-
standing of processes musts
be firmly rooted in measure-
ments. This solid basis lets
you accurately benchmark
existing processes and quanti-
fy the value of subsequent
improvement efforts.

A significant precedent
for such an approach is the
work done in the early 1960s
inJapanese software facto-
ries, where Japanese devel-
opers gathered data on exist-
ing processes before chang-
ing or improving them.’
More recently, Alexander
Wolf and David Rosenblum
noted that to improve
pm and design new
ones, you must first obtain
concise, accurate, and mean-
ingful information about
exisfing prucesse~.~ That is,
by understanding how and

why programmers work the
way they do, we will be bet-
ter positioned to identify
tools and methods that
enable them to perform tasks
better and in less time.

REFERENCES
1. F. Brooks, Jr.. The .I~ythd.Wnn-

;Ifonth. Addison-LVesley,
Reading, &‘Iass., lY7j.

2. B. Boehm and P. Papaccio,
“Understanding and Controlling
Softwre Costs,” IEEE Tmm.
Sufmre Eng., Oct. 1988, pp.
l-&Z-1477.

3. G. Weinberg, The P@oh~ of
Cmnputer Pmgramming, Van
Nostrand Reinhold, Xew York,
lY71.

4. R’. Curus, “By the W’ay, Did
Anyone Study Any Real
Programmers?” in Empihzl
Studies ofProgrmmzm, R.
Soloway and S. Iyengar, eds.,
Ahlex Publishing, Norwood,
NJ., 1986, pp. 256-262.

5. M. Cusumano,japan’r Sojiwe
Factories, Oxford University
Press, New York 1991.

6. A. Wolf and D. Rosenblum. “A
Study in S&ware Process Data

CS Press Los Alamitos. C&f.,
1993, pp. 115-124.

1 ,1
/I I,

IEEE SOFTWARE 39

lhwked proleet: ABCDE Devetopr: A. B. Smith Date: August 9,1993

Use the following flowchart to determine the numberAette.r 01
activity on and off tbis project:

combination that best dewiks your

Use the number/letter or letter combination determmsd abnvc to till m rhe Mlow~ng tmx chart:

oooo 0100 0200 0300 0400 OS04 ofioi) 0700 warn 09oa loao 1100

1200 1300 1400 I500 Ihoo I700 1x00 19oa 30 2100 2200 23M)

I I

Comments:

Refer quWmments to: Mark Bradac: xxxx and Lany Votta: xxu

blocks. C\‘e then verified the reliability
of the summary process by randoml!
comparing reports prepared by inde-
pendent researchers. The level of com-
parability was well within accepted
research standards.

By following this approach, ue were
able to validate the time diary as a low-
cost, effective way to determine how
people spend their time. This, in him,
served as a mechanism to obtain
coarse-grained data about the software
process, because processes are ultimate-
ly what make people do things.

TIME-DIARY EXPERIMENT

Before we conducted this experi-
ment, we did an initial pilot study,
drawing on one programmer’s person-
al log to construct an initial time-diary
instrument. The log let us identify the
principal activities and working states
as well as formulate several hypothe-
ses, which we tested in subsequent
experiments. For this discussion, we
focus on the experiment itself. The

from a definition of the development
processes; activities partition the possi-
ble ways in which a developer may be
performing that task.)

If the developer was not working on
the assignment, we had to differentiate
among reasons for not working: reas-
signed to a higher priority project;
blocked, waiting on resources; or per-
sonal choice to lvork on another activity.

Figure 3 presents the distribution
of time spent over various develop-
ment tasks (subjects generally rounded
off time to the nearest half hour).
Even though the development phase
was primarilv coding, there is a rea-
sonable distribution of time spent on
other tasks. In fact, roughlv half the
time is occupied b!r noncoding tasks.
This indicates rather clearly that not
only does the waterfall model not
reflect what actually goes on (which
every developer already knows), but
the accepted wisdom of an iterative
and cyclical model of development is

: also inadequate. In a large project such
complete details of the pilot stud! rre ~ as this, both product and process are
presented elsewhere.’ in multiple states at once. iVe have, in

Over the one-year life of the exper- essence, many iterative, evolutionary
iment, 13 people from four software- development processes being per-
development departments filled out formed concurrently.
the time diary on a daily basis. During Figure -I shows the distribution of
the study, we revised the time-(liar! ~ time over process states (working on
form several times as a result of both the process, blocked and waiting for
positive and negative feedback from resources, not working on the
the subjects. proc~). The ratio of elapsed to rice

Figure 2 illustrates the final time- time is roughI\, 2.5 - developers
diary form. It is easier to use than our worked on a particular development
initial version (most subjects spent two onI!, 40 percent of the time. The!,
to three minutes daily tilling it in, AS spent the rest of the time either aait-
opposed to five to 10 minutes a day for ing on rcsourccs or doing other work.
the earlier form), vet it still managed
to capture the basic data we needed

\17t: learned from our pilot stud)
that blocking \-aries throughout the

about development processes. The development cycle, and that coding
resolution of reported time was one- often exhibits the least amount of
hour segments - a relatively large blocking. \\‘e surmise that this reflects
granularity, but one appropriate to our the low dependency on outside orga-
goals. All we had to know for each nizations, resources, and experts dur-
time segment was if the developer LFJS inc this phase. (LVe later corroborated
working on the assigned feature. If he th?s result in the direct-observation
was, then we simply had to know the experiment.) U’e also discovered that
appropriate task within the process most of the developers were working
and the appropriate activity withln on t\vo development projects at once,
that task. (We extracted task steps which we believe is the way organiza-

40 JULY 1994

r

tions choose to deal with blocking. I
The amount of rework done was

about 20 percent - roughly one fifth
of the total working time. The time (
spent not working is clearly dominated 1
by reassignment to other projects. /
This reassignment emphasizes two
important aspects of large-scale)ft-
ware development. First, project vrga- !
nization is extremely dynamic because i
priorities change and requirements I
evolve. Second, this is a real-time sys-
tern that is being simultaneously used
and modified, soLin addition to fielding
occasional critical customer problems, I
devel6pers must custotnize new fea- ;
tures for specific customers. 1

Figure 5 presents a histogram of
the duration of time intervals across
all study subjects. The intervals tend
to be clustered in common patterns.
The significant numher of four-hour
working segments reflects the day ~
broken in half by lunch. The frequen-
cv of two-hour segments is due to the I
organizational mandate limiting /
review meetings to two hours or less.
The significant number of eight-hour ~
segments is due to the test laboratory 1
being scheduled for either four- or I
eight-hour intervals, depending on /
the complexity of the lab setup.

i

5,Mo ?

coo0 1

DIRECT-OBSERVATION EXPERIMENT

Although periodic interviews and
occasional unannounced visits had
convinced us that no conscious mis-
representation was occurring, we
wanted to check the time diaries in a
second experiment using direct
observation. Although direct observa-
tion and ethnographic studies are
fairly common in social science
research, they are highly unusual in
studies of software development. A
common rationale is that “software
developers don’t like to he (and
therefore cannot be) observed.” The
truth is that 110 one likes to be
observed. However, a well-designed
experiment can do much to alleviate
trepidation,’ and such an approach is

I ~~___

IEEE SOFTWARE 41

I
1 2 3 4 5 6 7 8 9 10 =>ll

Time i&vai (hotas

insights about the process, including
the effect of communication on work
flow and the use of communication
media.

’ I
II

Figure 5. Selflreported time-diary intervals. This histogram shows the number of
self-re&orted time-diary entries by all subjects. There were over 600 diary entries of
ji-om four to fizye honrs. The histogram demonstrates that, ezjen in a relatively
culde measurement like a self-reported time diary, there are recognized breaks in
the ue of time. The spikes at two, four, and eigbt hours are part of the culture of
the development organization. The two-hour peak occurs because the maximum
review> meeting time is two hours. The fozlr-hour peak is the break caused by lunch.
The eight-hour break occms -when the nlbject either worked through hncb or OI~!JJ
bad one euny per day.

not entirely without precedent, as the
box on pp. AA-AA describes.

We randomly chose five software
developers from the group participat-
ing in the time-diary experiment. We
also included two software developers
outside the self-reporting experiment
so that we could evaluate the effect of
self-reporting plus observation and
observation without self-reporting.
Somewhat surprisingly, no one who
was asked refused to participate.

Procedures. We observed each sub-
iect for an average of nine to 10
hours per day for five days over 12
weeks. Each subject chose and sched-
uled two of the five days. Interest-
ingly, subjects often forgot when
they had scheduled such sessions and
were surprised to see the researcher
in the morning - further proof that
they were not too intimidated by the
prospect of being observed. The
remaining three days were assigned
by random draw without replace-
ment, and the subjects were not
informed of when they would occur.

The logistics behind this were not
trivial. For example, vacations had to

42

be blocked out in advance, and the
observer had to adjust her schedule to
accommodate subjects who worked
flexible hours. Many lab sessions were
also conducted off-hours, and we had
to establish what to do if a developer
did not come into work.

We used continuous real-time
recording for nonverbal behavior and
interpersonal interactions. When a
developer was working at the terminal,
we used a time-sampled approach, ask-
ing the developer at regular intervals
“What are you doing now?” Ll’e
recorded daily observations in small
spiral notebooks, one for each subject.
Each evening, we converted the note-
book observations to standard com-
puter files. This let us readily fill in
observations while they were still fresh
and served as the basis for interim
summary and analysis sheets. As data
came in, we added it to a loose-leaf
notebook, with separate sections for
each subject. This helped us stay orga-
nized over time and made it easier for
the researchers to communicate.

Insights. The direct-observation
study gave us several significant

lommunitotion and work flow. Gerald
Weinberg once posed the provocative
question, “Does it matter how many
people a software developer runs into
during the day?“+ He argued that
although the task of writing code is
usually assigned to an individual, the
end product will inevitably retlect the
input of others. Indeed, we were
impressed by the amount of time each
developer spent in informal communi-

I I

cation - on average, 7.5 minutes per
day of unplanned interpersonal inter-
action (although this was scattered into
episodes of widely differing duration). 8;

Organizational theorists have long
acknowledged that information flow is
critical to an organization’s success.’
Most studies of communication in
collaborative work, however, have a
narrow focus, typically restricting
results to one communication medi-
um or focusing on exchanges that
were planned and relatively long.
hloreover, the empirical data often
consists of asking subjects who they
talk to the most, which risks confusing
frequency with duration or effect. Our
study, on the other hand, tracked all
communication activity, at the indi-
vidual level and across four media: e-
mail, phone, voice tnail, and in-person
visits. We did not include paper
because hard-copy documentation is
practically nonexistent in this organi-
zation; all documentation is kept up to
date on line.

For each subject, \ve kept a sum-
mary sheet of what we observed their
interactions to be across the four
media. The interactions were on-the-
fly exchanges usually involving little
formal preparation and little reliance
on written documentation, diagrams,
or notes. MJe broke down each inter-
action in terms of whether it was sent
or received by the subject.

We discovered two interesting
things:

JULY 1994

+ There was much unplanned inter-
action with colleagues: requests to
informally review code, questions about
a particular tool, or general problem-
solving and debriefing sessions.

+ Former colleagues made up a
surprising percentage of the contacts.
One of our subjects who had trans-
ferred to another department approxi-
mately two months earlier received, on
average, one call a day from his former
group. (Of course, we would expect
this trend to decline over time for a
particular individual.)

We did not include contacts
made in (scheduled) meetings or in
the laboratory, purely social ex-
changes, or exchanges with “faceless”
administrators.

Num6er of unique contorts. Figure 6 is a
box-plot diagram showing the num-
ber of unique daily contacts over five
days of observation for each subject.
A box plot is an excellent and effi-
cient way to convey certain promi-
nent features of a distribution. Each
data set is represented by a box, the
height of which corresponds to the
spread of the central 50 percent of
the data, with the upper and lower
ends of the box being the upper and
lower quartiles. The dot within the
box denotes the data median. The
lengths of the vertical dashed lines
relative to the box indicate how
stretched the tails of the distribution
are; they extend to the standard range
of the data, defined as 1.5 times the
interquartile range. The detached
points are outliers. As depicted by the
far right box plot, the median num-
ber of unique contacts, across all
study subjects, was seven per day.

The outliers are particularly inter-
esting. The highest point (17 unique
contacts) represents a day in which
developer 2C started to work on a
code modification motivated by a
customer field request. The other
outliers also correspond to modifica-
tions of existing code, and in each
case, the number of unique interfaces
approximately doubled from the

Figure 6. Unique contacts per szlbect per day. This jigure reflects interactions
across jiw- communication media: voice mail, e-mail, phone, and personal visits,
but does not include contacts made durihg meetings or lab testing. It also does not
in&de purely social exchanges. The median over all su&ects is 7 (last boxplot). The
outliers rejlect primarily days in which a subject was mod$ving existing code.

baseline of seven. Most of these con-
tacts were requests for authorization
to change code owned by another
developer. Just slightly less frequent
were calls to a help desk for pass-
words or information about a partic-
ular release, calls to the lab request-
ing available time slots for testing,
and exchanges with peers about
process procedures in general.

These contacts were not techni-
cally related per se. That is, the solu-
tion was often not the motivating
issue driving this behavior. Rather,
the developers needed help imple-
menting the solution.

frequency of communkotion. Figure 7
shows the number of messages being
sent and received each day across the
different media. The distributions of
sent and received visits and phone
messages are both approximately nor-
mal, reassuring us that the sample is
not significantly skewed and also sug-
gesting the presence of reciprocal
interactions. (We did not explicitly
track communication threads, a group
of related communication events
devoted to a single problem.6)

As the far right set of boxes shows,
a developer typically received a total of
16 messages and sent a total of six mes-

sages each working day. Ignoring e-
mail for the moment, the most ubiqui-
tous form of contact in this work envi-
ronment was in-person visits. They
occurred approximately two to three
times as often as the other media.

Asymmetry of e-moil use. One of the
most surprising results was the use of
e-mail. Many corporations are start-
ing to implement this new form of
communication, and we fully expect-
ed, given the computer-intensive
nature of this organization, to see a
large amount of e-mail traffic.
However, although our subjects
received many such messages (a medi-
an of nine per day), they sent very few
(a median of zero per day). What’s
more, the content of these messages
was rarely technical. Most of the traf-
fic was devoted to organizational news
(announcements of upcoming talks,
recent product sales, and work-related
congratulatory messages) or process-
related information (mostly an-
nouncements of process changes).

We attribute this phenomenon to
several factors.

+ It is difficult and time-consuming
to coherently draft a complex technical
question or response. As noted by one
developer “E-mail is too slow; by the

IEEE SOFTWARE 43

Figure 8. Duration per contact by media type. The duration per contact is broken
down by media channel and according to whether the message was received (r) or
initiated (s). We applied a square-root tran$ormation to stabilize the variance.
Each box contains data on all seven study subjects across five days of observation per

time I type out a coherent description tive problem-solving that is ill-suited
of the problem, I could have called or
walked over and gotten the answer.”

to the e-mail venue. Then again, our
subjects may have been reluctant to

+ The ambiguity of software tech- release a written recommendation or
nology may necessitate a type of itera- opinion without having control over its

final distribution.
+ The e-mail system being used

had been around for 10 years, long
enough for a use pattern to emerge. In
this organization, e-mail appears to be
synonymous with broadcasting. The
flooding of the system with nontechni-
cal messages may make developers
reluctant to use it for pressing techni-
cal issues.

length of rommunicotion. Figure 8 plots
the duration of messages in each medi-
um. Looking across all forms of com-
munication, approximately 68 percent
of the interactions are less than five
minutes long. This agrees with research
done in the early 1980s at Xerox Palo
Alto Research Center7 on a somewhat
larger sample. It also confirms anecdo-
tal evidence supplied by independent
studies of this population.

Predictably, voice-mail messages
are very brief - one minute.
Surprisingly, phone conversations are
also brief - two to three minutes.
Both require the same amount of t ime
to receive as to send.

The figure also sh ows that subjects
needed less time to read an e-mail item
than to send one. This is also not sur-
prising, since composing a satisfactory
message requires more thought than
reading one. In the same vein, it takes
about three minutes longer to make a
visit than to receive one because the
visitor must walk to the desk of the
person being visited.

Finally, there are significant outliers
in all media; visits of close to one hour
and phone calls of 30 minutes are not
uncommon. This result is particularly
nonintuitive because all these interac-
tions are unplanned and unanticipated.

0 ur primary motivation for this study
was to measure and understand

aspects of process intervals, but we also
wanted to investigate underdeveloped
arenas in software research: the social
snucture, environment and culture of a
real organization of software developers.
It is our belief that all three elements

44 JULY 1994

(organization, process and technology) ~ . mvolving technology, and the data on their work done.
must be addressed before we can get a : the number of interpersonal contacts a Most important, we were able to
complete picture of the development developer requires during a typical quantify what had previously been pre-
process. working day strongly suggests that tech- dominately qualitative impressions about

The results support our belief that nical problems are not the real issue in life as a software developer in this firm:
elements of the organization are as this organization. Rather, these software + People are willing to be observed
important as technology, if not more so: developers need to apply just as much and measured if you take the proper
A large percentage of the process cycle effort and attention to determine who to precautions.
was devoted to aspects not directly contact within their organization to get 4 Software development is not an

isolated activity. Over half our subjects’

~ ACKNOWLEDGEMENTS
We are grateful for the extremely hard work of our collaborators, who made all these expermxnts

possible: Mark Bradac, Dale Knudson, and Dennis Loge. Tom Allen of MIT brought us together, and
Peter Wembergcr, Eric Sumner, and Gerw Ramaee Drovided the financial SUIIDOR. Mar& Tvre of

time was spent in interactive activities
other than coding, and a significant part
of therr day was spent interacting in
various ways with coworkers.

L_ L >‘
MIT was particularly helpful, providing extensive input along the way and pointing us in the direction
of relevant organizational theory, Bill I n osino’s f early suggestions regarding experimental design issues
and Art &so’s editing of an earlier version of this article are also much appreciated.

Finally, we acknowledge the cooperation, work, and honesty of the study subjects and their col-
leagues and management for supporting our work with their participation.

REFERENCES
I. F. Brooks, Jr.. “Plenary Address: Grasping Reality Through Illusion,” Froc. Cimqmter-Human

Interface ConJ, ACM Press, New York, 1988, pp. 1.13.
2. M. Bradac, D. Perry, and L. Cotta, “Prototyping a Process Monitoring Experiment,” Proc. Zjth Int’l

Conf: So)wzre Eng., IEEE CS Press, Los Alamitos, 199 3, pp. 15i- 165.
3. C. Judd, I?. Smith, and L. Kidder, Research Methods in Sod Rchtions, 6th cd., Harcourt Brace

Jovanovich, New York, 1991.

+ Progress on a particular develop-
ment is often impeded for a variety of
reasons: reassignment to a higher prior-
ity task waiting for resources, and con-
text switching to maximize individual
throughput.

+ On average, work is performed in
two-hour chunks.

+ Time diaries are adequate for
their intended level of resolution. What
is missing, however, is data on
unplanned, transitory events. Direct
observation showed us that developers
spend about 75 minutes per day in
unplanned interpersonal interactions.

+ There are seven unique personal

4. G. Weinberg, The Pxycholo~ gfComputer Progmmming, Van Nostrand Reinhold, New York, 197 1.
5. T. Allen. il;lana@?z~ the Flow ofTechnology, MIT Press, Cambridge, Mass., 1977.
6. A. Wolf and D. Rosenblum, “A Study in Software Process Data Capture and Analysis,” Proc. 2nd

ht’l Conf: Sofauwe P~wess, IEEE CS Press, Los Alamitos, Calif., 1993, pp. 115-124.
7. M. Abel, “Experiences in an Exploratory Distributed Organization,” m Intellectual Teamwork, J.

Galegher, R. Kraut, and C. Egido, eds., Erlbaum Publishing, Ilillside, N.J., 1990, pp. 489.510.

I ’ / contacts per day on average, represent-

Dewayne E. Perry is a member of the technical staff in the Software and Systems
ing continuing interactions; this can

Research Center at AT&T Bell Laboratories. His interests include software-
double for certain kinds of activities.

process descriptions, analysis, modeling, visualization, and environmental support, + Direct interpersonal communica-
as well as software architectures, software-development environments, and the tions are the dominant means of inter-
practical use of formal specifications and methods. He is on the editorial board of action. E-mail tended to be used as a
IEEE Tramartiom on Sojiwwe Engineering.

Perry received an MS and a PhD in computer science from Steven’s Institute
of Technology. He is a member of the ACM and IEEE.

Nancy Staudenmayer is a doctoral student in management of technological innovation at MIT’s Sloan
School of Management. Her interests include the management of software-development projects and how
new forms of information technology affect organizations.

Staudenmayer received a Bh in mathematics from Wellesley College and an MA in statistics from the
University of California at Berkeley.

broadcast medium in this organization
rather than as a means of exchanging
technical ideas or achieving social con-
sensus. This fact is particularly impor-
tant as much of cooperative-work tech-
nology presupposes e-mail as the cen-
tral basis for cooperation.

Motivated by the three surprising
results - the exuansion factor of race

Lawrence G. Votta is a member of the technical staff in the AT&T Bell
Laboratories’ Software Production Research Department at Naperville, Illinois. His
interests include understanding how to measure and model large and complex soft-
ware-development processes.

Votta received a BS in physics with high honors from the University of
Maryland at College Park, and a PhD in physics from the Massachusetts Institute of
Technology. He is a member of the IEEE Computer Society and ACM

.Address questions about this article to Perry at AT&T Bell Laboratories,
Rm. 2B-43 I, 600 Mountain Ave., Murray Hill, NJ 07974, dep@esearch.att.com

time to development time, the amount
of unplanned interruptions, and the
limited use of e-mail - we are now
building queuing models to help us
understand development time. At the
same time, we are continuing to investi-
gate the functions that meetings, both
planned and unplanned, serve in the
process. +

IEEE SOFTWARE 45

