
TaskTracer: A Desktop Environment to Support
Multi-tasking Knowledge Workers

Anton N. Dragunov, Thomas G. Dietterich,
Kevin Johnsrude, Matthew McLaughlin,

Lida Li, Jonathan L. Herlocker
Oregon State University

Department of Computer Science
102 Dearborn Hall

Corvallis, OR 97331, U.S.A.

{anton, tgd, johnsrud, mclaughm, lili, herlock}@cs.orst.edu

ABSTRACT
This paper reports on TaskTracer — a software system being
designed to help highly multitasking knowledge workers rapidly
locate, discover, and reuse past processes they used to success-
fully complete tasks. The system monitors users’ interaction with
a computer, collects detailed records of users’ activities and re-
sources accessed, associates (automatically or with users’ assis-
tance) each interaction event with a particular task, enables users
to access records of past activities and quickly restore task con-
texts. We present a novel Publisher-Subscriber architecture for
collecting and processing users’ activity data, describe several
different user interfaces tried with TaskTracer, and discuss the
possibility of applying machine learning techniques to recog-
nize/predict users’ tasks.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces — User-centered design, Prototyping.

General Terms
Management, Design, Human Factors.

Keywords
Knowledge management, multitasking, activity monitoring, ma-
chine learning, user interface.

1. INTRODUCTION
Knowledge workers spend the majority of their working hours
processing and manipulating information. They take information
as input and produce information as output. The information may
be encoded in many different formats: documents, software code,
web pages, email messages, phone conversations. An important
characteristic of knowledge workers is that their work is cogni-
tively intensive and requires focus, concentration, and memory.
Another characteristic is that they must process considerable
quantities of information in order to get their job done.

Many of today’s professionals are knowledge workers: professors,
managers, software developers, lawyers. Many of these profes-
sionals have multiple tasks in progress concurrently, although
they are generally only working on a single task at any instant in
time. The combination of cognitively intensive processing, con-
siderable quantities of information, and multitasking make knowl-
edge work extremely challenging [6, 11]. We consider how we
can design intelligent user interfaces (UI) to make knowledge
work less challenging and more productive. We focus on knowl-
edge workers who interface with information primarily through a
desktop software interface.

This paper reports on TaskTracer, our current attempt at Oregon
State University to create a software system to assist knowledge
workers in their daily routines. Our software focuses on two areas
where we believe that intelligent software interfaces can have a
substantial effect on the productivity of knowledge workers: inter-
ruption recovery and knowledge reuse.

By definition, highly multitasking people face continual interrup-
tions as they switch between ongoing tasks [7, 11, 18]. Given that
knowledge workers are involved in nontrivial analysis and deal
with large amounts of information, recovering from interruptions
often has a significant overhead cost. This overhead may be cog-
nitive: workers may have to remember exactly where they were in
a chain of logic, or why they decided to take their most recent
action on a task. The overhead may also just lie the in manual
interaction needed to locate and access the necessary resources
(e.g., documents and/or software tools). If we can reduce the
overhead involved during interruption recovery, we should be
able to improve the productivity of knowledge workers.

Knowledge workers often manage the complexity of their work
through extensive knowledge reuse. One common method of this
reuse is what we call templating. Templating occurs both with
processes and with artifacts (most commonly, documents) and is
possible because knowledge workers must often repeat very simi-
lar processes. For example, researchers must write grant proposals
every year. Knowledge workers use past processes as templates
for their current work. Researchers reuse the process that success-
fully gained them the last grant proposal as a template for a new
proposal. This eliminates the need to re-derive (cognitively or
manually) the processes needed to complete a task. Furthermore,
it allows iterative improvement of processes over time. Finally,
processes known to succeed in the past may have high likelihood
of succeeding in the future. We seek to design software that helps
people to rapidly locate, discover, and reuse past processes they
used to successfully complete tasks.

In some interaction scenarios, it seems less useful to recall an
entire past process and rather recall individual information re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI’05, January 9-12, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-58113-894-6/05/0001...$5.00.

75

sources that are generally useful for particular types of tasks. For
example, the process of hiring graduate students is significantly
different from hiring permanent staff, yet the human resources
(HR) web site at Oregon State University is very useful for both.
A professor may have never hired a permanent staff member be-
fore, but he/she can return to the HR page to seek guidance.

With TaskTracer, we are seeking to address these issues of inter-
ruption recovery and knowledge reuse using a combination of
ubiquitous (across software applications) data collection, machine
learning, information visualization, and recommendation UI’s.

2. RELATED WORK
The idea of building an environment that enables knowledge
workers to manage multiple concurrent activities and use knowl-
edge of those activities to improve productivity has been around
for many years. All the approaches suggested so far, in one way or
another, are based on the premise that knowledge workers organ-
ize their work into discrete units, usually called tasks. Tasks de-
fine virtual workspaces that comprise information resources (usu-
ally documents and tools for their processing) necessary to ac-
complish the goal associated with the task. Some systems allow
(in a sense) “physical” separation of tasks requiring users to create
a project-specific folder, or set up a virtual desktop for each par-
ticular task (e.g., [5, 20]). Other systems work at more abstract
level by organizing task-specific workspaces using “filters” ap-
plied to communication threads (as in TaskMaster [3]), streams or
networks of documents (Lifestreams [10] and Presto [8] respec-
tively).

To be of assistance to a user, an agent (whether it is a computer
system or a human associate) must “understand” what the user is
currently doing. It has long been believed that a computer assis-
tant can infer information about users’ tasks and goals by analyz-
ing the context in which the user performs one action or another
[1, 14]. In some information retrieval systems, such as Watson
[4], the currently opened document is used for context to improve
the accuracy of search results. However, the user’s task context
usually includes not only the current document, but also other
documents, as well as contacts, electronic messages, and many
other items, which might not be present in the workspace at the
moment, but which were used in the past or are scheduled for use
in the future.

In task-centered communication systems, recording the history of
the task (and/or the virtual workspace associated with it) is ad-
dressed by creating contexts out of threads of messages sent and
received. Communication threads, such as those in Bellotti’s
TaskMaster [3], or temporal grids as in Gwizdka’s TaskView
[12], seem to quite accurately reflect history of the project (or
task) and describe a variety of resources used in it: contacts, elec-
tronic messages, task-related documents, etc. One significant
drawback of such systems, however, is that important information
that does not go through the communication channel may not be
recorded at all. For example, relevant web links may appear in e-
mail messages, but the web-browsing history that led to those
links is likely to be lost forever. A web link in a message leaves a
track about a particular web page, but not about the experience
(and thus the certain amount of knowledge) obtained during the
course of accessing the page. Extra information “around” a docu-
ment, web-link, or contact may provide many important details
for the task context.

In addition to the records about resources used in a task, it also
seems reasonable to record user’s actions performed on those
resources. The rationale behind this is that to have the correct
comprehension of the task context for some resources we must
consider in which way and for what reason they were accessed.
For instance, the same document (say, a text file) may be opened
for two completely different purposes: 1) for reading and 2) for
authoring. The approach by Kaptelinin in his UMEA (User-
Monitoring Environment for Activities) system [15] addresses this
issue by aiming at recording as much information as possible
about users’ activities when they interact with computers. Activity
records are obtained via monitoring the computer file system,
input devices, and running applications.

The dilemma associated with this approach is that collecting the
system events for activity records at the very fine level of granu-
larity (which is desired) may create overhead and huge amounts of
data that may be challenging to draw inferences from [13], or may
not be useful at all in some tasks. Reducing the amount (and the
variety) of the data collected lowers the requirements for systems
hardware/storage and reduces the complexity of inference mod-
ules, but it may leave some important data unrecorded and un-
processed. Thus, the UI event monitoring system should balance
the granularity of data collection and the necessary level of infer-
ence.

It seems beneficial to approach this problem by providing users
with the possibility to tailor the data collectors for each particular
task. For example, some tasks, such as typing or drawing, may
require information about every single key stroke and mouse
move, whereas other tasks may require only very high-level
events such as opening an application (e.g., running an antivirus
program to scan a hard drive). Ideally, the data collectors should
be tailorable for every particular application, so that users can
decide what data is important to gather from that application.

An attempt to design such a system was reported recently by Fen-
stermacher and Ginsburg [9]. In their project, called POKER
(Process-Oriented Knowledge Delivery), the event monitoring is
initiated by launching a shell application written in Python that in
turn launches Microsoft applications in the form of COM objects.
The program then monitors the events exposed by these COM
objects. However, such invocation can be inconvenient, since it
requires the user to remember to start the shell application prior to
launching any monitored applications. This architecture restricts
the number of events that can be monitored to those that are ex-
posed by the COM interface.

3. THE TASKTRACER
TaskTracer adopts the idea that knowledge workers organize their
work into tasks. Associated with each task is a process to com-
plete the task and a set of information resources (documents, elec-
tronic messages, contacts, etc.) and tools (computer applications,
phone line) employed to access and manipulate these resources.

3.1 Task Profiles
Through an extensive data-collection framework, TaskTracer
collects detailed observations of user interactions in the common
productivity applications used in knowledge work: email, word
processing, spreadsheets, and Internet browsers. At the initial
stage of data collection, users manually specify what tasks they
are doing, so that each action of the user (UI event) will be tagged

76

with a particular task identifier. We believe that with enough data
we can learn to reliably predict the users’ current task and task
switches, and thus we can create complete and detailed records of
what has been done on every tasks (past and present). We call
such a record of a task a task profile.

Our goal is to leverage task profiles to support interruption recov-
ery and knowledge reuse. When users return to a task they have
previously interrupted, TaskTracer can restore all the applications
that were in the process of being used for that task, open the
documents that were being consulted, and indicate within those
documents what elements had been recently changed at the time
of the interruption. Furthermore, TaskTracer’s knowledge of the
current task and collection of all past task profiles allows it to
customize the user interface to most efficiently support that cur-
rent task. For example, file open dialogs can default to folders
associated with the current task, files most likely to be needed can
be placed on a quick-start bar, and applications likely to be needed
can be preloaded into memory.

3.2 UI Event Monitoring
While following the same path as UMEA and POKER in seeking
to gather as much information about user’s activities as possible,
TaskTracer does the data collection in a slightly different way.
TaskTracer too uses Microsoft’s COM components, but every-
thing is done in the Microsoft .NET Framework. Python, used in
POKER, is an excellent approach for rapid application develop-
ment, but Microsoft .NET provides greater and finer-grained
monitoring capabilities, albeit with more initial development ef-
fort.

TaskTracer monitors Microsoft Office, Visual Studio and Internet
Explorer applications by installing .NET COM addin objects with
the Extensibility and IObjectWithSite interfaces. These addins
monitor Microsoft applications as soon as they are launched and
are intimately bound to the applications. No user intervention or
shell application is required once TaskTracer is installed. The
addins also access the richer event sets of the Microsoft Office
internal Visual Basic for Applications (VBA) compiler. Using
VBA, TaskTracer can monitor a richer event set by working
around Microsoft Office COM limitations.

TaskTracer also monitors Windows at the operating system level
with such events as window focus, clipboard and file creation
events. To monitor applications and the operating system Task-
Tracer uses components written in C#, C++, and VB.NET.

3.3 The Publisher-Subscriber Architecture
TaskTracer separates the user interface and data analysis compo-
nents from the event collection components by using a Publisher-
Subscriber Architecture (Figure 1).

The Publisher collects data about the user’s activities and dis-
seminates this event data to one or more Subscribers. Each Sub-
scriber can process the event data from the Publisher in a different
way. Some Subscribers not only receive EventMessages from the
Subscriber Port but also send EventMessages to the Listener Port.
For example, TaskExplorer (a UI for task switching described
later in the “User Interface” section), sends TaskBegin messages
to the Listener Port every time the user selects a new task.

Events are collected from
• Task.Connect, a COM addin attached to MS Office applica-

tions and that can also communicate with the Visual Basic for
Applications (VBA) macros within MS Office applications.

• A Windows CBT hook which is attached to the Publisher.
• .NET FileSystemWatcher class which is attached to the Pub-

lisher.
• A hook to the Windows Clipboard chain which is attached to

the Publisher.
• A hook to a phone modem which collects Caller ID and

speech-to-text information.

Task.Connect collects an MS Office event and assembles the
event into an EventMessage (thin arrows on Figure 1) that is sent
via TCP to the Publisher. The Publisher receives an EventMes-
sage, stores it in a database and sends it, via TCP, to Subscriber
applications for further processing. Depending on the research
question and goal pursued, each Subscriber can process the
EventMessages received from Publisher in a different way.

All EventMessages are stored in the Publisher’s database in raw
form so that researchers can analyze the history of user events.
Since the learning models are still being developed, any data

MS Word Task.Connect

MS Outlook Task.Connect

… Task.Connect

PUBLISHER

Listener
Port

(TCP)

CBT Hook
(Win32)

File System
Watcher (.NET)

Subscriber
Port

(TCP)

Subscriber 1

Subscriber 2

Windows
Clipboard Hook

Events
Subscriber ...

Figure 1. TaskTracer Publisher-Subscriber Architecture

77

analysis that changes the data is premature. A variety of learning
models can be tested on identical data sets. We are currently re-
searching learning models based on the event data for predicting
the current task of the user and for detecting when the user has
changed tasks.

An EventMessage contains
• Type: Event type. For example, TaskTracer captures window

focus, file open, file save, web page navigation, text selection,
and many other events on both the applications and the operat-
ing system levels.

• Window ID: Window handle for windows, zero otherwise.
• Listener Version: Changes every time we change or add to the

EventMessages the Listener can send and process. This allows
backward compatibility as we change our data capture.

• Listener ID, the source of the EventMessage: MS Office pro-
grams, file system hooks, user, clipboard, phone, etc.

• Body Type, Body: Body Type and Body in XML format.
• Time: Time the event fired.

EventMessages are events collected from Microsoft Office 2003,
Microsoft Visual .NET, the Windows XP operating system and
phone calls. Currently TaskTracer collects events from Microsoft
Word, Excel PowerPoint, Outlook and Internet Explorer with
future plans to collect events from Microsoft Access, FrontPage,
Project, Publisher, MSN Messenger and Visio. Work is underway
to collect data from non-Microsoft applications such as Acrobat
Reader and Mozilla/Netscape.

TaskTracer currently collects file pathnames for file create,
change, open, print and save. Text selection and copy-paste events
are also collected. Work is underway to collect file data such as
full documents in XML format, Mail Merge, Excel Calculations,
Excel Pivot Tables and anything exposed by the MS Office OLE
Automation objects or by Microsoft VBA.

TaskTracer also collects Windows focus, web navigation, phone
call, clipboard and email events. We are also working on con-
structing generalized file open event capture for all Windows
applications. Phone call data collection uses Caller Id to collect
names and phone numbers of callers. In addition, speech-to-text
software collects the user’s — but not the caller’s — phone
speech.

The Publisher-Subscriber architecture of TaskTracer has several
powerful advantages over a monolithic approach. These advan-
tages include the following:
• Data collection is separated from data analysis and the user

interface.
• No prejudgments are made about the data schema of the data

collected.
• Multiple researchers can work on multiple projects with mul-

tiple data schemas that subscribe to the Publisher without in-
terfering with each other.

• Raw event data stored by the Publisher is like a tape-recorder
and can be analyzed and even replayed at a later time.

The separation of the data collection components from the analy-
sis and presentation components allows rapid application devel-
opment of new software projects by researchers. For example, to
create a new UI, a researcher only needs to understand the struc-
ture of the EventMessage and the use of the TCP protocol. The
ability to send EventMessages simultaneously to many Subscrib-

ers allows separate independent research projects to assemble a
suite of applications that can function as a single application.

The separation of the data collection components from the Pub-
lisher and Subscriber components has allowed the TaskTracer
developers to concentrate on event capture arcana without the
distraction of the other components with the result that Task-
Tracer can capture a wide breadth of event types with a corre-
sponding richness of event data.

3.4 User Interface
We are currently experimenting with different user interfaces for
TaskTracer.

3.4.1 Pop-up Menu
The interface is shown on Figure 2. The main UI element is a
label (semi-transparent when not in focus of input) showing the
title of the current task. The label is always on top of all applica-
tion windows. This also serves users as a constant reminder about
what they are currently working on.

Clicking on the label brings up a pop-up window containing
menu-like items for quick access to the resources (documents and
web-pages) associated with the current task. Also, it provides
quick access to other tasks.

The color scheme for this UI may seem rather unusual (bright
yellow-green text on dark-green background). This was done on
purpose to make the UI be easily distinguishable from “regular”
MS Windows applications. TaskTracer is supposed to be on top of
every desktop activity, so the special status of this application
needs to be emphasized in some way, e.g., by using an extraordi-
nary color scheme.

It turned out that the interface had several significant drawbacks.
First of all, some users found the task title on the screen to be
irritating. Although the label could be easily moved around with a

Figure 2. TaskTracer UI: Pop-up Menu.

78

mouse, there was always a chance that it would go over and thus
block a control (button, input field, window frame border) which
the user needed to use at that moment.

Another big issue concerned the lists of recent items (tasks,
documents, web-pages). For some users, seven recent tasks and a
dozen documents in the list were quite enough, but there were
people whose lists of ongoing tasks and working documents were
huge (hundreds), and they needed to have quick access to all of
them. So, the lists showing only several recent items were useless
for such users. They always were invoking the full lists, sorted
alphabetically or otherwise, and found them more convenient to
use.

3.4.2 Start Menu
In an attempt to reduce the inconvenience resulting from the in-
troduction of extra UI elements on the screen, we considered a
closer integration of the TaskTracer UI into the operating system.
The main idea was to use existing user interface elements of Win-
dows: “Do not add anything, but replace existing elements with
ones having desired functionality.” The conjecture was that native
Windows interface elements were already familiar to users, so
they would not need to master a new interface concept. Task-
Tracer would only rearrange (and in some cases add a few task-
specific items into) standard menus, toolbars, etc.

Figure 3 shows a prototype interface whose basic design idea was
to make the standard Start Menu of Windows work as an interface
to switch tasks and access task-specific resources. The standard
Start Menu of MS Windows already contains many elements
(shortcuts) to access different computer resources. For example,
there are already lists of recently used applications and docu-
ments. At the very least, we only need to limit those lists by the
tasks they apply to and provide several new controls/shortcuts for
task switching and manipulating task profiles.

The title of the current task shows up on the Start button in the
task bar. The title and description of the task are shown in the
menu caption (replacing the user’s login name, which appears
there in standard start menu of MS Windows).

The balloon on Figure 3 is a “peek and select” feature of the inter-
face: if users do not remember in which of the recent tasks they
have a particular document or web-site, they can move mouse
pointer over the task names and see brief information about the
task: what that task is, what documents are in there, when the task
was last accessed, etc. After such “peeking” into the task, they can
finally decide which task they need to switch to.

However, the Start Menu UI has the same problem as we experi-
enced with the Pop-up Menu described earlier — limiting lists of
recently-used resources to a number of items which could be laid
out on the screen without creating too much clutter (5–20 items in

Figure 3. TaskTracer UI: Start Menu.

Figure 4. TaskTracer UI: Toolbar.

79

a list) was still inconvenient if users needed to operate on hun-
dreds of tasks and/or documents.

Customizing the Start Menu also required a certain amount of
“hacking”, since there were no standard tools in Windows to
change its appearance and functionality.

3.4.3 Toolbar
Another standard control we tried to implement for TaskTracer
was a toolbar. Figure 4 shows this prototype control with a task-
switching menu invoked by clicking on the toolbar caption which
displays the title of the current task.

The toolbar is placed in the Windows taskbar, which can be cus-
tomized to be on the screen at all times or auto-hide itself when
not used — a feature appreciated by users who find extra labels on
the screen irritating.

The functionality of the toolbar is similar to that of the standard
Windows address bar. In addition it supports task-related stuff:
switching between tasks, locating and opening documents/web-
sites, etc. To locate and use a resource, users can simply start typ-
ing the name of the resource in the input box. The system auto-
completes users’ input suggesting a list of filenames, tasks or
applications to choose from. This feature is for users who prefer to
use the keyboard instead of the mouse. For such users, launching
an application or opening a document by typing a file name in the
TaskTracer toolbar can be done much faster than locating the
resource using a browser (e.g., Windows Explorer).

3.4.4 TaskExplorer
TaskExplorer is the latest experimental UI for TaskTracer. It uses
the Windows Explorer as a metaphor. TaskExplorer is both a Sub-
scriber and a Listener. TaskExplorer subscribes to the Publisher to
receive EventMessages from Listeners and also sends an Event-
Message to the Publisher whenever a new task is selected.
TaskExplorer deliberately uses a very small subset of the informa-
tion collected by the Listeners to explore the usefulness of a
minimal interface.

The TaskExplorer window is shown in Figure 5. The left pane is a
tree view of the user’s tasks and subtasks. The right pane is the
collection of resources associated with a particular task. The

widths of these columns are user-configurable. TaskExplorer adds
resources based on the EventMessages received from the Pub-
lisher. If a resource already exists for a particular task, then the
Date Modified field is updated. Resources can be sorted by Name,
Path, Type or Date Modified in ascending or descending order. If
the user clicks on a resource, the resource will be opened by the
application associated with it.

The combo box in the TaskExplorer title bar shows which task the
user is on. This title bar combo box will move to whatever win-
dow is in focus except for topmost windows and dialog boxes.
This simple design solution unexpectedly received positive feed-
back from the current users of TaskTracer, since it allows the user
to see the current task and quickly access other tasks, and yet the
UI element is not blocking any working area on the screen (the
region of the window title bar where the combo box is placed
usually does not contain any useful information). The user
switches between tasks either by selecting a task name from the
combo box or by clicking on it in the TaskExplorer tree view. The
user selects tasks from the title bar combo box either by using the
pull-down menu or by typing the first few letters of the task name.

To create a new task, the user clicks on “Task | New...” menu or
enters a new task in the title bar combo box. The user can arrange
tasks hierarchically by dragging and dropping tasks underneath
other tasks within the task tree view. Documents can be moved
from one task to another by dragging and dropping.

Keyboard shortcuts are available for all TaskExplorer elements if
the user prefers not to use the mouse.

3.4.5 Other UIs
TaskTracer can be considered as a kind of a virtual desktop man-
ager [5]. When users switch tasks in a virtual desktop, all applica-
tions from the current task should be hidden from view and, if
necessary, hibernated, and the applications from the new task
should show up exactly as users left them previously. Hiding
documents and applications not related to the current task can help
better separate users’ tasks and thus reduce the “noise” in task-
tagging of the activity data collected.

Another interface concept that comes very close to the one of
virtual desktop manager and that can be tried with the TaskTracer

Figure 5. TaskTracer UI: TaskExplorer.

80

is the GroupBar suggested recently by Microsoft Research [2].
With the GroupBar, users can create groups of buttons on the task
bar for different applications related to the same task. A similar
feature is implemented in MS Windows XP, but it automatically
groups together all windows of a single application. With user
activity monitoring and event collection of TaskTracer, GroupBar
can become a powerful productivity tool for multitasking users.

4. CONCLUSIONS AND FUTURE WORK
In its current version, TaskTracer is used by the members of our
research group primarily as an instrument for collection of user
activity data. Not yet tested in the real work environment, Task-
Tracer now is rather a research tool that helps us identify a variety
of research questions and suggest approaches to solve them.

The big question we are trying to answer now is how we can col-
lect the cleanest, most accurate data on what tasks exists, and
what observed events belong to which tasks. Collecting data with
absolutely no noise seems to be impossible, even in the laboratory
environment of a small research group, where each member is
interested in obtaining pure data and thus tries to be very meticu-
lous in task specification. Users still make errors and tend to for-
get to indicate when they switch tasks. Therefore, support for
manual post-processing of collected data (adding, deleting, or re-
tagging of UI events) may be required.

We already have started and are going to continue investigating
machine learning approaches to detect task switches and predict
what the current task is (or if a new task has started). We are also
going to experiment with different learning models and collabora-
tive filtering techniques to predict what resources/tasks might be
relevant to user’s current task, so that we can provide users with
useful recommendations and make the relevant resources be easily
accessible.

As pointed out by Kaptelinin in [15], the whole idea of automatic
translation of interaction histories into project contexts is very
challenging to implement. If users must indicate task switching
manually (as currently implemented in TaskTracer), this will cre-
ate additional cognitive and physical burden for users, since they
will have to 1) mentally structure their activities and 2) perform
additional actions not directly related to the current goals — select
tasks from lists, type in task titles and descriptions, etc. We be-
lieve that we can reduce this burden by combining machine learn-
ing with appropriate user interfaces.

Interaction with technology is full of trade-offs along several di-
mensions of difficulty [16]. For example, if a user wants to find
something on the Web, and he/she knows that one of the virtual
desktops on the computer already contains a web-browser pointed
to, e.g., Google, the user is likely to switch to that desktop to do
the web-search. Launching a new web-browser window and typ-
ing in the URL in the current desktop will require more time and
effort than using the existing browser in another desktop which is
just a click away. Even if another desktop represents an entirely
different task that should not be “spoiled” with an irrelevant web-
search, the user may find it more convenient at the moment to
introduce a small amount of “noise” into the task-tagged event
stream, than to destroy his or her current mental context by addi-
tional efforts to fight the technology.

We need to investigate how users devise and employ such strate-
gies in order to find practical compromises necessary for workers
to run our software on their desktops every day and benefit from

it. User studies in the real work environment together with a thor-
ough analysis of activity histories should also give us much of
insight into how to design effective user interfaces for TaskTracer
that would help streamline users’ interaction based on knowledge
of their past and current tasks.

Another big challenge is the tracking of users’ activities that do
not involve direct interaction with a computer. Technology to
capture that sort of user activity already exists [17, 21]. Our sup-
port for recording and transcribing phone conversations is another
step towards solving this problem — currently we are able to de-
tect incoming calls, identify callers, and automatically switch the
user to the tasks associated with the caller. However, existing
speech recognition modules perform well only on outgoing speech
recorded directly from the user’s microphone. The caller’s speech
is almost impossible to recognize automatically due to relatively
poor sound quality in the phone line (the recognition accuracy is
only about 20%).

5. ACKNOWLEDGEMENTS
This project was supported in part by the National Science Foun-
dation under grant IIS-0133994 and by the Defense Advance Re-
search Projects Agency under grant HR0011-04-1-0005.

6. REFERENCES
[1] Bannon, L., Cypher, A., Greenspan, S., Monty, M., Evalua-

tion and analysis of users’ activity organization. Proceed-
ings of the SIGCHI conference on Human Factors in Com-
puting Systems, p.54–57. Boston, Massachusetts, USA.
ACM Press, 1983.

[2] Baudisch, P., Smith, G., Robertson, G., Czewinski, M.,
Meyers, B., Robbins, D., Horvitz, E., Andrews, D., Group-
Bar: The TaskBar evolved. Proceedings of OZCHI’03,
2003.

[3] Bellotti, V., Ducheneaut, N., Howard, M., Smith, I., Taking
email to task: The design and evaluation of a task manage-
ment centered email tool. Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pp.345–
352. Ft. Lauderdale, Florida, USA. ACM Press, 2003.

[4] Budzik, J., Hammond, K.J., User interactions with everyday
applications as context for just-in-time information access.
Proceedings of the 5th international conference on Intelli-
gent user interfaces, pp.44-51, ACM Press, 2000.

[5] Card, S., D. Austin Henderson, Jr., Rooms: the use of mul-
tiple virtual workspaces to reduce space contention in a
window-based graphical user interface, ACM Transactions
on Graphics, vol.5(3), pp.211–243, ACM Press, 1986.

[6] Cypher, A., The structure of user’s activities. In: Norman,
D.A., Draper, S.W. (Eds.), User Centered System Design:
New Perspectives on Human-Computer Interaction. Law-
rence Erlbaum Associates,. 1986.

[7] Czerwinski, M., Horvitz, E., Wilhite, S., A diary study of
task switching and interruptions. Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems, pp.175–182. Vienna, Austria. ACM Press 2004.

[8] Dourish, P., Edwards, W.K., LaMarca, A., Salisbery, M.
Presto: An experimental architecture for fluid interactive
document spaces. ACM Transactions on Computer-Human
Interaction, vol.6(2), 1999.

81

[9] Fenstermacher, K.D., Ginsburg, M. A Lightweight Frame-
work for Cross-Application User Monitoring. IEEE Com-
puter, vol.35(3), pp.51–59. IEEE, Inc. 2002.

[10] Freeman, E.T., Gelernter, D., Lifestreams: A storage model
for personal data. SIGMOD Record, vol.25(1), pp.80–86.
ACM Press, 1996.

[11] González, V.M., Mark, G., “Constant, constant, multi-
tasking craziness”: Managing multiple working spheres.
Proceedings of the SIGCHI conference on Human factors
in computing systems, pp.113–120. Vienna, Austria. ACM
Press, 2004.

[12] Gwizdka, J., TaskView: Design and evaluation of a task-
based email interface. Proceedings of the 2002 conference
of the Centre for Advanced Studies on Collaborative re-
search, Toronto, Ontario, Canada. IBM Press, 2002.

[13] Hilbert, D., Redmiles, D.F. Extracting Usability Informa-
tion from User Interface Events. ACM Computing Surveys,
vol. 32(4), pp.384–421, December 2000.

[14] Huff, K.E., Lesser, V.R. Knowledge-based command un-
derstanding: An example for the software development en-
vironment. Technical Report 82-6. Computer and Informa-
tion Science, University of Massachusetts, Amherst, MA,
USA. 1982.

[15] Kaptelinin, V., UMEA: Translating interaction histories
into project contexts. Proceedings of the SIGCHI confer-
ence on Human Factors in Computing Systems, pp.353–
360, Ft. Lauderdale, Florida, USA, ACM Press, 2003.

[16] Lansdale, M. The Psychology of Personal Information
Management. Applied Ergonomics, vol.19(1), pp.55–66,
1988.

[17] MacIntyre, B., Mynatt, E.D., Voida, S., Hansen, K.M., Tul-
lio, J., Corso, G.M., Support for multitasking and back-
ground awareness using interactive peripheral displays.
Proceedings of the 14th annual ACM symposium on User in-
terface software and technology, pp.41–50. Orlando, Flor-
ida, USA. ACM Press, 2001.

[18] McFarlane, D.C., Latorella, K.A., The Scope and impor-
tance of human interruption in human-computer interaction
design. Human-Computer Interaction, vol.17, pp.1–61,
2002.

[19] Pederson, T. Magic Touch: A Simple Object Location
Tracking System Enabling the Development of Physical-
Virtual Artefacts in Office Environments. Journal of Per-
sonal and Ubiquitous Computing, 5, 2001.

[20] Robertson, G., van Dantzich, M., Robbins, D., Czerwinski,
M., Hinckley, K., Risden, K., Thiel, D., Gorokhovsky, V.,
The Task Gallery: A 3D window manager. Proceedings of
the SIGCHI conference on Human factors in computing
systems, pp.494–501. The Hague, The Netherlands. ACM
Press, 2000.

[21] Want, R., Hopper, A. The active badge locator system.
ACM Transaction on Office Information Systems, 10 (1),
1992

82

