
P. Thomas and H.-W. Gellersen (Eds.): HUC 2000, LNCS 1927, pp. 172-186, 2000.
© Springer-Verlag Berlin Heidelberg 2000

CybreMinder: A Context-Aware System for Supporting
Reminders

Anind K. Dey and Gregory D. Abowd

Future Computing Environments Group
College of Computing and GVU Center

Georgia Institute of Technology, Atlanta, GA, USA 30332-0280
{anind, abowd}@cc.gatech.edu

Abstract. Current tools do not provide adequate support to users for handling
reminders. The main reason for this is the lack of use of rich context that speci-
fies when a reminder should be presented to its recipient. We describe Cybre-
Minder, a prototype context-aware tool that supports users in sending and re-
ceiving reminders that can be associated to richly described situations involving
time, place and more sophisticated pieces of context. These situations better
define when reminders should be delivered, enhancing our ability to deal with
them more effectively. We describe how the tool is used and how it was devel-
oped using our previously developed Context Toolkit infrastructure for context-
aware computing.

1 Introduction

A reminder is a special type of message that we send to ourselves or others, to inform
us about some future activity that we should engage in. For example, a colleague
might send us a reminder asking us to bring a copy of a paper to our next meeting.

We use reminders to signal others and ourselves that a task still exists to be worked
on and/or that a task is ready for further processing We use reminders to re-establish
needed information in short-term memory so that the trigger conditions for these re-
minders can be satisfied [14].

Reminders have two main features — a signal and a description. The signal is used
to indicate something is to be remembered. An example of an audio-based signal is an
alarm on an alarm clock. Lights flashing in a theatre or a note pinned to a door are
examples of visual signals. The description is used to explain what needs to be re-
membered. This can vary from being non-descriptive, in the case of the alarm clock,
to being partially descriptive, in the case of a icon which provides only a few cues as
to what needs remembering, to being fully descriptive, in the case of an e-mail mes-
sage or handwritten note that provides all relevant details of the reminder.

We currently have a number of tools and strategies at our disposal to help us keep
track of reminders. However, studies have shown that users still have difficulty deal-
ing with reminders [6]. Difficulties stem from a number of issues regarding the use of
signals. Current reminder systems, acting as a form of externalized memory, do not

CybreMinder: A Context-Aware System for Supporting Reminders 173

present appropriate signals at appropriate times. More specifically, these tools are not
sufficient because they are not proactive and do not make use of rich contextual in-
formation to trigger reminders at appropriate times in appropriate locations. Herstad et
al. claim that in order to build useful, functional and powerful tools for supporting
human-human interaction, we must take context into account [9]. For example, to be
most effective, a reminder to bring a paper to a meeting should be delivered when we
are leaving our office and heading towards the meeting, and not when we happen to
read our e-mail. We will investigate this idea further by looking at traditional ways of
handling reminders, indicating how insufficient use of context causes problems.

By reviewing existing reminder tools, we will show that users have trouble dealing
with reminders due to the lack of use of rich context. We will then propose a list of
features that an ideal reminder should support. We describe CybreMinder, a reminder
tool that supports these features and some scenarios that it currently supports. Finally,
we describe CybreMinder’s system architecture and how it leverages off an existing
context-sensing infrastructure (the Context Toolkit [4,16]) to allow the specification
of situations in which reminders can be delivered.

2 Current Reminder Tools

We use a variety of tools that help us in creating and managing our reminders. In this
section, we examine these tools and investigate our claim that they do not use enough
context information to adequately support our needs. This brief review of reminder
tools will lead us to a list of desirable features for a context-aware reminder system.

2.1 Paper To-Do Lists

A common reminder tool is a to-do list written on a piece of paper. The to-do list may
contain both traditional calendar/scheduler information and a set of tasks that need to
be completed. While it is simple to create a list, it is not so easy to remember to use it
in the appropriate situation. A to-do list lacks the ability to proactively remind us
when an item on the list needs to be accomplished. Instead, the list creator must re-
member to check it often, to determine which items need/can be accomplished. In
other words, a to-do list provides reminders with descriptions, but no signals.

2.2 E-Mail Mailbox

An e-mail mailbox is often used as an informal to-do list. Some people send them-
selves e-mail as a reminder to perform some activity at a later date. A study of e-mail
tool usage showed that when checking their e-mail, people often flag messages con-
taining to-do items to create a visual reminder [8]. Another strategy is to file them in a
special mail folder, creating the electronic equivalent of a paper-based to-do list. As
with the paper-based to-do list, e-mail tools cannot proactively remind us of to-do
items. We are forced to repeatedly review these flagged or stored messages, in an

174 A.K. Dey and G.D. Abowd

attempt to ascertain which to-do items can be handled at the time. Again, this is an
example of a reminder with descriptions, but no signals. One advantage of e-mail over
paper is that people can use e-mail to create and send reminders to others. However, it
suffers from the disadvantage of not being as readily available as paper.

2.3 Post-It Notes

Another common strategy is to use post-it notes, paper or virtual [2,15], placed in
locations where the intended recipients can view them. The visibility of post-it notes
in the environment provides a signal to recipients that something needs to be remem-
bered. The content of the note provides the description of what is to be remembered.
Because post-it notes are always visible to the intended recipients, there is no way to
determine when they are valid. For example, a reminder to call someone may only be
valid before 10 p.m. but the reminder is still visible after 10 p.m., unless it is explicitly
removed. The paper post-it notes also have the disadvantage that they can also be
viewed by anyone, not just the intended recipients. This is another example of a re-
minding tool with inappropriate signaling capabilities. Post-it notes can only provide a
signal based on their location in the environment, indicating that they are only useful
for location-based reminders. An additional disadvantage of post-it notes is that they
do not support the ability to collect all reminders in a single artifact, unlike email
folders or to-do lists.

2.4 Personal Information Management Tools

Personal information management (PIM) tools such as electronic calendar and to-do
list programs suffer from a similar problem as post-it notes. While post-it notes are
useful for reminders where location is the only useful context, these PIM tools only
have affordances for temporal context: a meeting is at a certain time or a task must be
completed by a certain date. Current PIM tools can only provide a signal based on the
current time, making them no more intelligent than a simple alarm clock. The tool
provides an audio or vibration signal and it is our responsibility to retrieve the de-
scription or content of the reminder. Both types of cues may be inappropriate in vari-
ous situations (e.g. audio cues in a meeting are disruptive and vibration cues while
jogging may not be noticed). This suggests that the manner in which reminders are
delivered is also extremely important.

2.5 Human Assistant

Another “tool” used to manage reminders is a human assistant. We often rely on a
personal assistant (secretary, spouse, etc.) to remind us of scheduled events and tasks
that require attention. The assistant acts as a mediator between the actual set of things
to be remembered and ourselves, creating reminders from a variety of communication
media (phone messages, faxes, e-mail, etc.), presenting them in the appropriate situa-
tion and using an appropriate delivery mechanism. However, even a personal assistant

CybreMinder: A Context-Aware System for Supporting Reminders 175

may not be enough. In most cases, personal assistants can only present reminders
when they are co-located with us. They can provide two types of reminders, those that
are relevant right now and those that are relevant in a future context when they will not
be with us. It is the second case that is troublesome. How many of us have been re-
minded to pick up an item from a grocery store as we are leaving for work, only to
forget to stop at the store on the way home? An ideal assistant would provide the re-
minder in the context that maximizes the chance for appropriate action.

2.6 Desired Features of a Reminder System

The externalized memory tools we have discussed are simple to use, but all take lim-
ited advantage of context for signaling; or for indicating that a reminder is relevant in
our current situation. Human assistants come closest to being the ideal reminder tool,
but as shown, there are opportunities to improve on their capabilities, and we cannot
all have human assistants. Based on our analysis of current tools, here is a list of the
features an ideal reminder tool should support:
• the use of rich context for specifying reminders, beyond simple time and location

and for proactively determining when to deliver them;
• the ability for users and third parties to submit reminders;
• the ability to create reminders using a variety of input devices;
• the ability to receive reminders using a variety of devices, appropriate to the user’s

situation;
• the use of reminders that include both a signal that something is to be remembered

and a full description of what is to be remembered; and
• allowing users to view a list of all active reminders.

3 Related Work

There has not been a lot of previous work in the area of context-aware reminders. As
discussed in the previous section, commercial efforts have focused on e-mail tools that
use no context or PIM tools that use only time. Another system that uses time-aware
reminders is Lifestreams [6]. Lifestreams is a system for organizing documents that is
intended to replace conventional files and directory structures. Instead, Lifestreams
organizes documents temporally, based on when they were created, received, and/or
modified. The beginning of a stream contains the oldest documents while the end of a
stream contains the most recently created documents. The interface allows users to
even visit the future portion of the document stream. When a user creates a document
in the future portion of the stream, they are effectively creating a time-based reminder.
When they return to present time, these documents are hidden and only appear when
present time matches the future time of the documents.

The comMotion project [13] moved beyond this by using a combination of location
and time information to deliver relevant messages. When a reminder message is cre-
ated, a location is associated with it. Then, when the intended recipient arrives at that

176 A.K. Dey and G.D. Abowd

location (work or a grocery store, for example), the messages associated with that
location are delivered via speech synthesis. In addition, when a user arrives at work,
her calendar events for that day are delivered, taking advantage of time as well as
location information.

Proem is a wearable computer-based system that supports profile-based coopera-
tion [11]. Wearers can write simple rules that indicate their interests in other people.
When someone physically close to the wearer has a profile that matches one or more
of his interests, Proem can alert him. Interests are limited to fairly static pieces of
information such as names and personal interests and hobbies.

Memory Glasses is a wearable computer-based context-aware reminder system [3].
It proposes the use of time, location, and activity to deliver reminders. It focuses on
personal context and uses body-worn sensors (a camera and a microphone) to deter-
mine what activity the wearer is engaged in, including walking down stairs or taking
part in a conversation. When Memory Glasses determines the current activity, remind-
ers associated with that activity are presented to the using audio output. Memory
Glasses proposes that knowledge of this activity may be used to better determine when
it is appropriate to interrupt the wearer with a reminder.

While these systems address many of the features of an ideal reminder tool, they
are limited by their restricted use of context. The notion of context is quite rich and
encompasses many information types beyond location, time and activity, such as
identity, physical/environmental conditions, as well as information about other indi-
viduals besides the user [5,18]. As the context associated with a reminder is made
richer, the system’s ability to deliver the reminder in the appropriate situation is im-
proved. The CybreMinder reminder tool we will present in the next section attempts to
address all the features of the ideal reminder tool, concentrating on increasing the
variety of context used to associate with reminders. It is not intended to replace exist-
ing calendar or to-do list tools, but to augment them.

4 The CybreMinder Tool

To aid our investigation of reminder tools and interfaces, we built the Java-based
CybreMinder tool. It has two main parts — reminder creation and reminder delivery.

4.1 Reminder Creation

When users launch CybreMinder, they are presented with an interface that looks quite
similar to an e-mail creation tool. As shown in Figure 1, users can enter the names of
the recipients for the reminder. The recipients could just be themselves, indicating a
personal reminder, or a list of other people, indicating a third party reminder is being
created. The reminder has a subject, a priority level (ranging from lowest to highest), a
body in which the reminder description is placed, and an expiration date. The expira-
tion date indicates the date and time at which the reminder should expire and be deliv-
ered, if it has not already been delivered.

CybreMinder: A Context-Aware System for Supporting Reminders 177

Fig. 1. CybreMinder reminder creation tool

Fig. 2. CybreMinder situation editor

In addition to this traditional messaging interface, users can select the Situation tab
and be presented with the situation editor (Figure 2). This interface allows dynamic
construction of an arbitrarily rich situation, or context that is associated with the re-
minder being created. The interface consists of two main pieces for creating and
viewing the situation. Creation is assisted by a dynamically generated list of valid sub-
situations that are currently supported by the CybreMinder infrastructure (as assisted
by the Context Toolkit described later). When the user selects a sub-situation, they can
edit it to fit their particular situation. Each sub-situation consists of a number of con-
text types and values. For example, in Figure 2, the user has just selected the sub-
situation that a particular user is present in the CRB building at a particular time. The
context types are the user’s name, the location (set to CRB) and a timestamp.

In Figure 3, the user is requiring the user name to be “Anind Dey”, and is not using
time. This sub-situation will be satisfied when Anind Dey is in the location ‘CRB’.

178 A.K. Dey and G.D. Abowd

Fig. 3. Sub-situation editor

The user indicates which context types are important by selecting the checkbox
next to those attributes. For the types that they have selected, users may enter a rela-
tion other than ‘=’. For example, the user can set the timestamp after 9 p.m. by using
the ‘>’ relation. Other supported relations are ‘>=’, ‘<’, and ‘<=’. For the context
value, users can either choose from a list of pre-generated values, or enter their own.

At the bottom of Figure 2, the currently specified situation is visible. The overall
situation being defined is the conjunction of the sub-situations listed. Once a reminder
and an associated situation have been created, the user can send the reminder. If there
is no situation attached, the reminder is delivered immediately after the user sends the
reminder. However, unlike e-mail messages, sending a reminder does not necessarily
imply immediate delivery. If a situation is attached, the reminder is delivered to re-
cipients at a future time when all the sub-situations can be simultaneously satisfied. If
the situation cannot be satisfied before the reminder expires, the reminder is delivered
both to the sender and recipients with a note indicating that the reminder has expired.

4.2 Reminder Delivery

Thus far, we have concentrated on the process of creating context-aware reminders.
We will now describe the delivery process. When a reminder can be delivered, either
because its associated situation was satisfied or because it has expired, CybreMinder
determines what is the most appropriate delivery mechanism for each reminder recipi-
ent. The default signal is to show the reminder on the closest available display, aug-
mented with an audio cue. However, if a recipient wishes, they can specify a configu-
ration file that will override this default.

A user’s configuration file contains information about all of the available methods
for contacting the user, as well as rules defined by the user on which method to use in
which situation. If the recipient’s current context and reminder information (sender
identity and/or priority) matches any situation defined in his configuration file, the
specified delivery mechanism is used. Currently, we support the delivery of reminders
via SMS on a mobile phone, e-mail, displaying on a nearby display (wearable, hand-
held, or static CRT) and printing to a local printer (to emulate paper to-do lists).

CybreMinder: A Context-Aware System for Supporting Reminders 179

Fig. 4. Delivered reminder

Fig. 5. List of all reminders

For the latter three mechanisms, both the reminder and associated situation are de-
livered to the user. Delivery of the situation provides additional useful information to
the user, helping them understand why the reminder is being sent at this particular
time. Along with the reminder and situation, users are given the ability to change the
status of the reminder (Figure 4). A status of “completed” indicates that the reminder
has been addressed and can be dismissed. The “delivered” status means the reminder
has been delivered but still needs to be addressed. A “pending” status means that the
reminder should be delivered again when the associated situation is next satisfied.
Users can explicitly set the status through a hyperlink in an e-mail reminder or through
the interface shown in Figure 4.

Since SMS messages have limited length, only the subject of a reminder is deliv-
ered when using this delivery mechanism. Users receiving such an SMS message
have the option of going to a networked device and launching their interface (Figure
1) to CybreMinder. By selecting the View All tab, users can view a personalized list
of all reminders and can change the status of any of these reminders (Figure 5).

180 A.K. Dey and G.D. Abowd

5 Example Reminders

In this section, we describe a range of reminders and situations that users can create
using CybreMinder, moving from simple situations towards more complex situations.
The situations are only limited by the context that can be sensed. Table 1 gives the
natural language and CybreMinder descriptions of the illustrated situations below.

Table 1. Natural language and CybreMinder descriptions of scenarios in Section 5

Situation Natural Language
Description

CybreMinder Description

Time 9:45 am Expiration field: 9:45 am
Location Forecast is for rain and

Bob is leaving home
City = Atlanta, WeatherForecast = rain
Username = Bob, Location = Bob’s front door

Co-Location Sally and colleague are
co-located

Username = Sally, Location = *1
Username = Bob, Location = *1

Complex #1 Stock price of X is over
$50, Bob is alone and
has free time

StockName = X, StockPrice > 50
Username = Bob, Location = *1
Location = *1, OccupantSize = 1
Username = Bob, FreeTime > 30

Complex #2 Sally is in her office has
some free time, and her
friend is not busy

Username = Sally, Location = Sally’s office
Username = Sally, FreeTime = 60
Username = Tom, ActivityLevel = low

5.1 Time-Based Reminder

Like many of the other systems previously described, CybreMinder allows reminders
to be triggered based on a simple time context. In this scenario, Sally has a meeting at
10 a.m. tomorrow. She wants to send a reminder to herself fifteen minutes before the
meeting occurs, so that she has time to walk to the meeting. She can simply set the
expiry date to be tomorrow’s date and 9:45 a.m.

5.2 Location-Based Reminder

In this scenario, Bob wants to remind himself to take his umbrella to work because it
is supposed to rain this afternoon. He keeps the umbrella near his apartment door, so
he wants to receive the reminder as he approaches the door. Here, he can simply cre-
ate a situation with only one sub-situation: he is at his front door. In CybreMinder
terms, he sets the username to his name and location to his front door. This situation
can be made slightly more complex. If Bob is sending the reminder the night before,
then he may want to add a time attribute and set it to be greater than 7:00 a.m. By
doing so, the reminder will not be triggered and displayed each time he leaves his
apartment that night. It will only be displayed when he approaches the door after 7:00
a.m. the next morning. Pushing on this scenario a little more, Bob does have to know
ahead of time that it is going to rain. He can simply create a reminder that is to be
delivered whenever the forecast calls for rain and he is leaving his apartment.

CybreMinder: A Context-Aware System for Supporting Reminders 181

5.3 Co-location-Based Reminder

Of the systems we reviewed, only Proem [11] supported proactive reminders when
two or more people were co-located in an arbitrary location. It can be argued that
post-it notes could be used in this setting, although it currently breaks normal social
conventions to stick post-it notes to people. An example co-location scenario follows:
Sally wants to engage a colleague in a discussion about an interesting paper she read,
but forgets when she sees her colleague. She can create a context-aware reminder that
will be delivered when she is in close proximity with her colleague. The situation she
creates is slightly more complex than the ones we have discussed so far, and it makes
use of variables. Variables allow users to create relationships between sub-situations.
First Sally creates an initial sub-situation where she sets the user name to be her col-
league’s name and the location to be variable (indicated in Table 1 by *1). Then, she
creates a second sub-situation, where she sets the user name to be her name and the
location to the variable used in the first sub-situation. Now when Sally and her col-
league are in the same arbitrary location, the reminder will be delivered.

5.4 Complex Reminder

CybreMinder supports the unlimited use of rich context, allowing users to create as
rich a situation as can be sensed. We describe two such situations. In the first scenario,
Bob owns stock in Company X and has decided to sell that stock when it is valued
over $50 per share. He only wants to be reminded to sell, however, when he is alone
and has free time. To create this situation to signal a reminder to sell, Bob creates a
number of sub-situations: stock price of company X > $50, Bob is the only occupant
of his location, and Bob’s schedule shows that he has > 30 minutes before his next
meeting. When this situation occurs, Bob receives the reminder to sell his stock.

In our second complex scenario, Sally needs to make a phone call to her friend
Tom. She wants to receive a context-aware reminder when she arrives at her office,
has some free time in her schedule, and her friend is not busy. To create this situation,
she creates three sub-situations: Sally is in her office, Tom’s activity status is low, and
Sally has at least one hour before her next appointment.

6 The CybreMinder Architecture

In the previous two sections, we described how CybreMinder works from the user’s
perspective. Here, we discuss how CybreMinder was built. When users write situa-
tions to be associated with reminders, CybreMinder must have a way to determine
when they have been realized. It uses the Context Toolkit1 for this purpose.

1 The Context Toolkit and tutorial can be downloaded from http://www.cc.gatech.edu/fce/

contexttoolkit.

182 A.K. Dey and G.D. Abowd

6.1 The Context Toolkit

The Context Toolkit is a software toolkit that aids in the building of context-aware
applications [4,16]. It promotes three main concepts for building context-aware appli-
cations; separation of context sensing, or acquisition, from context use; context aggre-
gation; and context interpretation. It relieves developers from having to deal with how
to sense and access context information, allowing them instead to concentrate on how
to use the context. It provides simplifying abstractions like aggregation and interpre-
tation to make it easier for applications to obtain the context they require. Aggregation
provides “one-stop shopping” for context about an entity, allowing application design-
ers to think in terms of high level information, rather than low-level details.

Fig. 6. Context Toolkit components: arrows indicate data flow

The architecture makes it easy to add the use of context to existing applications that
don’t use context and to evolve applications that already use context. In addition, the
architecture makes context-aware applications resistant to changes in the context-
sensing layer. It encapsulates changes and the impact of changes, so applications do
not need to be modified.
The Context Toolkit consists of three basic building blocks: context widgets, context
aggregators and context interpreters. Figure 6 shows the relationship between the
context components and applications. Context widgets encapsulate information about
a single piece of context, such as location or activity, for example. They provide a
uniform interface to components or applications that use the context, hiding the details
of the underlying context-sensing mechanism(s). They allow other components to both
poll and subscribe to the context information they maintain. Widgets are mainly re-
sponsible for collecting information about the environment. However, they also sup-
port services that allow them to affect the environment. For example, a Light widget
that detects the intensity of the light in a particular location, and have a service that
controls a lamp to change the intensity.
A context aggregator is very similar to a widget, in that it supports the same set of
features as a widget. The difference is that an aggregator aggregates multiple pieces of
context. In fact, it is responsible for the entire context about a particular entity (person,

CybreMinder: A Context-Aware System for Supporting Reminders 183

place, or object). Aggregation facilitates the access of context by applications that are
interested in multiple pieces of context about a single entity. A context interpreter is
used to abstract or interpret context. For example, a context widget may provide loca-
tion context in the form of latitude and longitude, but an application may require the
location in the form of a street name. A context interpreter may be used to provide this
abstraction.
Context components are intended to be persistent, running 24 hours a day, 7 days a
week. They are instantiated and executed independently of each other in separate
threads and on separate computing devices. The Context Toolkit makes the distribu-
tion of the context architecture transparent to context-aware applications, mediating all
communications between applications and components. A discovery protocol allows
components to communicate with each other without knowing about the existence of
each other at compile or instantiation time.

6.2 CybreMinder and the Context Toolkit

When CybreMinder launches, it uses the Context Toolkit discovery protocol to detect
what context components are currently available. It analyzes this and determines what
sub-situations are available for a user to work with. The sub-situations are simply the
collection of subscription callbacks that the context widgets and context aggregators
provide. For example, an IdentityPresence context widget contains information about
the presence of individuals in a particular location (specified at instantiation time).
The callback it provides has three attributes: a user name, a location, and a timestamp.
The location is a constant, set to “home”, for example. The constants in each callback
are used to populate the menus from which users can select values for attributes.

When the user creates a reminder with an associated situation, the reminder is sent
to the aggregator responsible for maintaining context about the recipient. Cybre-
Minder can be shut down any time after the reminder has been sent to the recipient’s
aggregator. The recipient’s aggregator is the logical place to store all reminder infor-
mation intended for the recipient because it knows more about the recipient than any
other component and is always available. This aggregator analyzes the given situation
and creates subscriptions to the necessary aggregators and widgets so that it can de-
termine when the situation has occurred. It also creates a timer thread that awakens
when the reminder is set to expire. Whenever the aggregator receives a subscription
callback, it updates the status of the situation in question. When all sub-situations are
satisfied, the entire situation is satisfied, and the reminder can be delivered.

The recipient’s aggregator contains the most up-to-date information about the re-
cipient. It tries to match this context information along with the reminder sender and
priority level with the rules defined in the recipient’s configuration file. The recipi-
ent’s context and the rules consist of collections of simple attribute name-value pairs,
making them easy to compare. When a delivery mechanism has been chosen, the ag-
gregator calls a widget service that can deliver the reminder appropriately. For exam-
ple, a display widget provides information about the display capabilities of a device. It
also provides a service that allows other components to display information on that
device. Similarly, e-mail and SMS services exist in the Context Toolkit.

184 A.K. Dey and G.D. Abowd

Services can also return information to the component that calls them. For example,
the display service not only shows the reminder and associated situation, but also a
form allowing the user to set the state of this reminder. The user input to this form is
sent back to the recipient’s aggregator, which can update the reminder status. In the
case of SMS, when the user must set the status using the CybreMinder, the application
contacts the user’s aggregator and queries for all the reminders and associated infor-
mation. The application sends any updated status information to the aggregator.

7 Conclusions and Future Work

The goal of CybreMinder is to provide users with a tool that provides appropriate
support for dealing with reminders. In particular, our objective is to support all the
features of an ideal reminder tool:
• use of rich context for specifying reminders, beyond simple time and location and

for proactively determining when to deliver them;
• ability for users and third parties to submit reminders;
• ability to create reminders using a variety of input devices;
• ability to receive reminders using a variety of devices, appropriate to the user’s

situation;
• use of reminders that include both a signal that something is to be remembered and

a full description of what is to be remembered; and
• allowing users to view a list of all active reminders.

We believe that we have been mostly successful in this objective. We provide some
support for all of these features, except for the ability to create reminders using a vari-
ety of input devices. We will discuss each of these features in turn.

The first feature, allowing for the use of rich context in reminders, is the most im-
portant feature for a reminder tool and is the one that is most lacking in existing re-
minder tools. By leveraging off of the Context Toolkit’s ability to acquire and distrib-
ute context, we allow users to create arbitrarily complex situations to attach to re-
minders and to create custom rules for governing how reminders should be delivered
to them. Users are not required to use templates or hardcoded situations, but can use
any context that can be sensed and is available from their environment. From initial
use of the system, we have found that while the interface supports the specification of
complex situations, it can be complex to use, particularly when variables are involved.
We would like to find the correct balance of sophistication and simplicity in an effort
to improve the interface. One potential solution is a suite of special-purpose reminders
with highly simplified interfaces that suit their specific use.

By using a discovery protocol for determining what context is available, we attempt
to limit users in creating situations that CybreMinder is able to detect. However, it is
possible for users to create situations that CybreMinder cannot detect. Some of these
situations can be caught by the aggregator, but not all. We intend to improve the
checking ability of CybreMinder.

Part of the reminder creation process is the specification of recipients. A user can
set the recipients of the reminder to be herself, herself and others, or just others. In this

CybreMinder: A Context-Aware System for Supporting Reminders 185

way, CybreMinder supports the ability to send reminders to yourself or third parties.
Currently, users can only create reminders using the Java-based CybreMinder. This
application can run on any networked device that can support Java, including desktop
computers, WinCE devices and wearable computers. However, the Context Toolkit
does not require that applications be written in Java. We envision, in the near future,
creating simplified versions of CybreMinder that can be executed on a Palm Pilot, a
pager, or a mobile phone, which a user interacts with not only using text, but also pen
and speech input. We would also like to support the automatic creation of reminders
from user’s calendars and to-do lists.

On the delivery side, CybreMinder sends both the reminder and the associated
situation to a service for display (via e-mail, available screen, or SMS). The quality of
the reminder signal and the completeness of the reminder description depend on the
service being used. E-mail provides a poor signal if the user is not at reading their e-
mail at the reminder time, but does present a complete description. Displaying a re-
minder on a nearby screen with an audio cue provides both a good signal and a com-
plete description. SMS provides a very good signal but only a partial description.
Likewise, there are advantages and disadvantages to automatically printed reminders.

By supporting a greater variety of devices and display services, we can allow users
to make better personal choices about how they want to receive reminders (both in
terms of the signal and description) in various situations. CybreMinder delivers a
reminder when the associated situation has been realized, and chooses the delivery
mechanism/service based on the recipient’s current context. However, it does not take
into account how interruptible the recipient is. We realize that the use of static user
configuration files is not the answer, but determining interruptiblity is an enormous
unsolved research problem [10,14,17,19], and as researchers make progress in this
area, we would like to improve CybreMinder accordingly.

Initial responses to CybreMinder have been promising. We intend to expand our
current user population and perform an objective evaluation of CybreMinder and
comparison to existing reminder tools. We would also like to examine the use of the
CybreMinder reminder tool as part of a larger context-aware messaging system.

8 Acknowledgements

We would like to thank the Future Computing Environments research group for con-
tributing to these ideas. This work was supported in part by a NSF CAREER Grant #
9703384, a Motorola University Partnerships in Research grant and the ITO division
of DARPA through the Expeditions/Ubiquitous Computing program.

References

1. Bergqvist, J., Ljungberg, F.: ComCenter: A Person Oriented Approach to Mobile Com-
munication. Extended abstract In Proceedings of CHI 2000 (2000) 123–124

186 A.K. Dey and G.D. Abowd

2. Brown, P.J.: The Stick-e Document: A Framework for Creating Context-Aware Applica-
tions. Electronic Publishing (1996) 259–272

3. DeVaul, R.W., Clarkson, B., Pentland, A.: The Memory Glasses: Towards a Wearable
Context Aware, Situation-appropriate Reminder System. In CHI 2000 Workshop on Situ-
ated Interaction in Ubiquitous Computing (2000)

4. Dey, A.K., Abowd, G.D., Salber, D.: A Context-Based Infrastructure for Smart Environ-
ments. 1st International Workshop on Managing Interactions in Smart Environments
(MANSE’99) (1999) 114–128

5. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In CHI 2000 Workshop on the What, Who, Where, When, and How of Con-
text-Awareness (2000)

6. Fertig, S., Freeman, E., Gelernter, D.: “Finding and Reminding” Reconsidered. SIGCHI
Bulletin, Vol. 28 (1996)

7. Gellersen, H-W.: EMC: Environment-Mediated Communication. International Workshop
on Interactive Applications of Mobile Computing (IMC’98) (1998)

8. Gwizdka, J.: Timely Reminders: A Case Study of Temporal Guidance in PIM and Email
Tools Usage. Extended abstract in Proceedings of CHI 2000 (2000) 163–164

9. Herstad, J. Van Thanh, D., Audestad, J.A.: Human-Human Communication in Context.
International Workshop on Interactive Applications of Mobile Computing IMC’98 (1998)

10. Horvitz, E.: Mixed-Initiative User Interfaces. In Proceedings of CHI 99 (1999) 159–166
11. Korteum, G., Segall, Z., Thompson, T.G.C.: Close Encounters: Supporting Mobile Col-

laboration through Interchange of User Profiles. In Proceedings of HUC’99 (1999) 171–
185

12. Ljungstrand, P.: Context-awareness in distributed communication systems. In CHI 2000
Workshop on the What, Who, Where, When, and How of Context-Awareness (2000)

13. Marmasse, N.: comMotion. Extended abstract in Proceedings of CHI’99 (1999) 320–321
14. Miyata, Y., Norman, D.A.: Psychological Issues in Support of Multiple Activities. User

Centered Design, edited by Norman, D.A., Draper, S.W. Chapter 13 (1986) 265–284
15. Rekimoto, J., Ayatsuka, Y., Hayashi, K.: Augment-able Reality: Situated Communication

through Physical and Digital Spaces. In Proceedings of 2nd International Symposium on
Wearable Computers (ISWC’98) (1998) 68–75

16. Salber, D., Dey, A.K., Abowd, G.D.: The Context Toolkit: Aiding the Development of
Context-Enabled Applications. In Proceedings of CHI’99 (1999) 434–441

17. Sawhney, N., Schmandt, C.: Nomadic Radio: Scaleable and Contextual Notification for
Wearable Audio Messaging. In Proceedings of CHI’99 (1999) 96–103

18. Schmidt, A., Beigl, M. Gellersen, H-W. There is More to Context than Location: Envi-
ronment Sensing Technologies for Adaptive Mobile User Interfaces. Workshop on Inter-
active Applications of Mobile Computing IMC’98 (1998)

19. Stringer, M., Eldridge, M, Lamming, M.: Towards a Deeper Understanding of Task Inter-
ruption. In CHI Workshop on Situated Interaction in Ubiquitous Computing (2000)

	1 Introduction
	2 Current Reminder Tools
	2.1	Paper To-Do Lists
	2.2	E-Mail Mailbox
	2.3	Post-It Notes
	2.4	Personal Information Management Tools
	2.5	Human Assistant
	2.6	Desired Features of a Reminder System

	3 Related Work
	4 The CybreMinder Tool
	4.1	Reminder Creation
	4.2	Reminder Delivery

	5 Example Reminders
	5.1	Time-Based Reminder
	5.2	Location-Based Reminder
	5.3	Co-location-Based Reminder
	5.4	Complex Reminder

	6 The CybreMinder Architecture
	6.1	The Context Toolkit
	6.2	CybreMinder and the Context Toolkit

	7 Conclusions and Future Work
	8 Acknowledgements
	References

