
CHAPTER12

The Structure of Users' Activities

ALLEN CYPHER

The exasperated shout, "I can only do one thing at a time!" usually
comes from people attempting to do six things at once, at a time when
they are only capable of doing five. One way we do five things at once
is by interleaving the activities. We dice the chicken while waiting for
the water to boil, turn down the heat on the rice while frying the
onions, but wait a moment to take out the bread because the white
sauce is just starting to thicken.

Whether we are preparing dinner, debugging a program, or getting
married, a good part of our mental energies are spent linearizing. The
many parallel tracks of activities must be organized into a single linear
stream of actions to be performed. 1 In a sense we are very skilled at
scheduling multiple activities: It is a fundamental process which is a
constant part of our mental life. But at the same time, we make a lot
of scheduling errors: We let the bread burn while stirring the sauce, or
let the sauce get lumpy while removing the bread from the oven. ,

The field of ergonomics attempts to design objects that take into
account the realities of the human body-if a keyboard is too high, the
typist's wrists will have to bend and typing will be uncomfortable. In

I For a discussion of some of the complexities of multiple activities, see Chapter 13 by
Miyata and Norman, especially the section entitled Multiple Activities: Current and
Suspended.

244 ALLEN CYPHER

an analogous manner the field of human-computer interaction attempts
to design interfaces that take into account the realities of the human
mind. In this chapter, I deal with the reality that people do not simply
perform one activity at a time. Program designers put a great deal of
effort into allowing users to perform single activities well, but consider
ably less effort goes into allowing users to arrange those activities. If
computer systems are designed so that they actively support and facili
tate multiple activities, they will be more comfortable for the user.

CHARTING THE FLOW OF ACTIVITIES

Our computer system provides support for multiple, interleaved activi
ties. 2 In order to get an idea of how frequently users actually do inter
leave activities, and in order to get a sense of the types of interleavings
that occur, I modified our local computer programs so that they would
keep a record of each command typed by the user. Whether the com
mands are to the top-level interpreter or to the text editor or the mail
program, they are all collected in the order in which they are typed.
Therefore, interleaved activities show up as interleaved sequences of
commands. Since it is sometimes difficult to associate commands with
the activities which they serve, users may also insert comments explain
ing their current activities. The Appendix describes the history
collection program in more detail.

Figure 12.1 diagrams the results of one of these historical records.
It charts the flow of my activities during one morning of computer use.
In the figure, each activity is shown as a box, with interruptions shown
as gaps in the shading. Important subactivities are shown as sub-boxes.

It can be seen from the figure that there are numerous cases of
intl(rleaved activitfes. Let's examine some of these cases in detail.

EXAMPLE 1. Three interleaved activities: read mail - repo
sition window - msg conversation

By starting at the lower left hand corner of Figure 12.1 and
following the arrows, you can see how I began my day with
three interleaved activities.

2 The system includes a VAX computer and a network of 15 Sun workstations. All use
the Berkeley UNIX operating system and the Sun supports multiple windows.

12. THE STRUCTURE OF USERS' ACTIVITIES 245

I start off the session by reading my mail [1]. While I am
waiting for that program to start up (it takes about 10
seconds), I type "toolplaces" in a second window - I was
annoyed at the default location of the "history" window, and
"toolplaces" will help me reposition the window [2]. "Tool
places" takes about 30 seconds to run, so I start up an elec
tronic msg conversation [3] by sending off a message to a
couple of friends. I then resume the reposition window [2]
activity: the "toolplaces" program has finished running, and
it tells me that the history window is already in its correct
location. But that can't be right.... I am confused so I
return to reading my mail [1 1.

I temporarily abandoned both the mail program and "toolplaces"
because they are slow to start. In the mornings I am impatient with
even short delays, but later in the day I still will be impatient when the
computer spends several minutes compiling a program. "Waiting for
the computer" is a common impetus for interleaving activities.

EXAMPLE 2. External Interruptions: helping A

A short time later, as I am about to start the activity
respond to P's message [7], I am interrupted by a phone
call[8]. User A wants some help with the "fmt" command. I
consult my personal database to get the information and
then log in to her machine to try it out.

Just as I finish, the message "You have new mail" flashes
across my screen. I invoke the mail program and read the
message, which continues the msg conversation [3] I started
earlier. After reading the mail, I have trouble remembering
what I intended to do before the interruptions. I eventually
recall that it was respond to P's message [71.

In this case, two interleavings are prompted by events external to
the user. External interruptions can be particularly disruptive since
they need not occur at a natural transition point for the user. Com
puter systems can be helpful in these cases if they are able to provide
reorienting information when the user attempts to return to the inter
rupted activity.

246 ALLEN CYPHER

1. Read Mall 8. Help A 14. Play With Windows
2. Reposition Window Find Note About "fmt• 15. Read New Mall
3. Msg Conversation Try It Out 16. Make a Note

4. Check Reminders 9. Delete Outdated Message 17. Save It as a Good Example

5. Arrange a Meeting 10. Mall From Y File It

Check Calendar Find History Programs Find the Sub-Bin

6. Delete Old Messages 11. Fix the Clock Describe the Example

7. Respond to P's Message Read Documentation Locate the Text

Send a Reply Ask for Help 18. Retitle a Note

Set Up a New Account 12. Read Over Printouts 19. Make a Main Bin
Log In to Remote Computer 13. Look at a Note

FIGURE 12.1. This figure charts the flow of activities during one morning of computer use. There are 19 activities, shown as boxes.
Shaded areas show when an activity is actually being performed, and arrows show when the user switches between activities. This figure
only covers part of one day. Activities (5) and (12) were not completed until later in the day.

The sequence of events during the day can be found by following the arrows. The session starts with read mail [I), switches to reposition
window [2], switches to msg conversation [3], returns to reposition window [2], and so on.

Subactivities are shown as sub-boxes. The box for help A [8] contains two sub-boxes, since this activity involved first "finding a note about
the 'fmt' command," and then "trying out the command." Activity [7], respond to P's message is more complicated because the subactivi
ties are interleaved. Shortly after the first subactivity of "sending a reply" was started, it was interrupted by the second subactivity of "set
ting up a new account."

The horizontal axis is scaled by number of commands.

!"

-l
:I:
rn
~
"' c
n
-l
c

"' rn
0
'Tl

c
"' rn

"' Ul

>
~
<
::j

51

N
-"":1

248 ALLEN CYPHER

Note how different this case is from the previous one. In example
1, I went out of my way to engage in several activities at once, since I
was bored doing one thing at a time. I was willing and able to accept a
greater mental load. In the second example, activities are being thrust
upon me, obliging me to abandon a simple one-at-a-time sequence.
The real-time demands of the tasks at hand impose a mental burden
that pushes the limits of my abilities. In this chapter I am not too con
cerned with users' motivations for interleaving activities; I concentrate
instead on ways to support the resulting multiple activities. Chapter 13
by Miyata and Norman focuses on what is going on inside the user's
head, and they present a detailed analysis of users' motivations.

EXAMPLE 3. Subactivities: arranging a meeting

I want to arrange a meeting [5] with R, so I decide to send
her a message. I type:

snd (" snd" is our program for sending electronic mail)
To: R
Subject: Meeting
Let's get together to talk about the project.
I'm free at

[remind tomorrow] ("remind' is our calendar program)

1:00 tomorrow.
Is that a good time for you?
-Allen

The "remind" command was typed in a different window. It
displayed my schedule for tomorrow so that I could see when I was
free.

EXAMPLE 4. Subactivities: responding to P's message(7)

I am responding to a message asking me to set up a new
account on a remote computer. I start typing a return mes
sage saying that I will do it, but instead I just set up the
account and report that it is done. This takes longer than I
expect because I have trouble linking to the remote com
puter.

12. THE STRUCTURE OF USERS' ACTIVITIES 249

Here the Main Activity "respond to the message" contains two
Subactivities: the Subactivity "send a reply," and the Subactivity "set up
the account," which contains a Sub-subactivity "link to the remote com
puter." You can see in the flowchart that "send a reply" is temporarily
interrupted by "set up the account." Incidentally, this entire activity is
interrupted by new mail which continues the msg conversation [3].

User Activities

When we design programs, we think about the sorts of things that users
will want to do and then we build tools for carrying out those tasks.
Implicit in this approach is the belief that there will be a fairly good
match between computer programs and user activities. But how well does
this assumption hold up in practice? Among the activities discussed so
far are "reading the morning mail," "arranging a meeting," "carrying on
an electronic conversation," and "helping another user with a com
mand." The programs used by these activities include the "mail pro
gram," the "calendar program," and the "personal database" program.
So in this list, the only case where an activity and a program are
matched is in reading mail.

Single Activities and Multiple Programs

One way for a mismatch to occur between activities and programs is for
a single activity to call upon more than one program. The activity of
arranging a meeting, for example, involved two programs: mail and
calendar. The ramifications of this simple fact are far-reaching and
have a dramatic effect on how a user interacts with a computer system.

A system which is oblivious to the use of several programs for a sin
gle activity places all of the burden of program management on the
user: in the case of arranging a meeting, I would have had to abort my
message when I realized that I did not know when I was free tomorrow.
Then, after consulting the calendar program, I would have then had to
call the mail program anew and retype the message.

Saving context. At issue here is the fact that when one engages in
an activity, one builds up a context. My context in "arranging a meet
ing" included a partially typed message. When you are engrossed in any
challenging activity, you build up a rich mental environment that is
populated with current problems, attendant confusions, and potential

250 ALLEN CYPHER

solutions. Even a momentary interruption will cause this elaborate
mental context to collapse. Complex activities on a computer can lead to
equally elaborate computer contexts. A half hour with an interactive
debugger, painstakingly stepping through deeply nested code, can pro
duce a context which could be reconstructed only by repeating the
half-hour procedure. With proper design, these elaborate computer
contexts can be interrupted without collapse.

Freezing programs. Computer systems can provide support for
interruptions by saving the complete state of a program. The Berkeley
UNIX "Stopped Jobs" facility is an example of this approach. It allows
any process to be frozen at any time, thereby freeing the computer for
some other process. When a process is frozen, its entire state, or con
text, is remembered so that it can be resumed precisely where it was
left off. Most window systems (but not, for instance, the Macintosh)
allow for multiple interactive processes for a single user. It is often said
that windows support multiple activities, but in fact it is the underlying
"multiple user processes" that enable multiple activities. Windows are a
particularly good representation for the user.

In the "three interleaved activities" example, I interrupted the
activity of reading my mail. Part of the state or context of the mail
program is a variable which specifies the "current message," the mes
sage that I am currently reading. This context was saved when I inter
rupted this activity. When I resumed reading my mail, I typed the
"next message" command, and the mail program knew where to con
tinue.

To be precise, a "stopped jobs" facility supports multiple programs,
not multiple activities. This distinction is significant in those cases
where activities do not correspond perfectly with programs. Suppose in
the arrange a meeting example that I suddenly want to interrupt this
entire activity while I am consulting the calendar. I could freeze the
calendar program, but there is no sense in which the system is aware
that my mail program is also associated with this activity. What I want
to do is to freeze my activity, not just one of the programs associated
with that activity. But an "activity" is not a part of the computer
system's vocabulary-it only knows about programs. When faced with
the fact that the system does not think in our terms, we just do our
best to align our activities with the units that are available. So we tend
to identify an activity with the program that it is currently using. As a
consequence, if I digress from the arrange a meeting activity for a
long time, I may return to the calendar program and forget that it is
associated with the previous mail program. And if I attempt to hide
this activity by closing the calendar's window, the window for the mail

12. THE STRUCTURE OF USERS' ACTIVITIES 251

program will remain open. In the context of activity management,
then, the idea behind "user centered system design" is to allow users to
treat their activities as manipulable units.

Windows. Windows divide one screen into multiple virtual screens,
each behaving like a complete screen. Windows are a further step in
saving a suspended context. Not only are all internal variables saved,
but the screen image that is presented to the user is saved as well. One
of the considerable advantages of windows over standard terminals is
that this saved image can be present on the screen even while the user
is engaged in an interrupting activity. It is hard to imagine a more
effective reminder of the interrupted task than its image on the screen.

Windows improve the user's vocabulary by adding a concept that is
one level above that of programs. By keeping all of the programs for a
single activity inside a single window, the user can indeed treat those
programs as a single unit. In practice, though, windows are often used
to make the multiple programs of a single activity available simultane
ously. This is common, because when two programs are being used
within the same activity, it is likely that the user will want to pass data
between them, see what they are both displaying, and interleave com
mands to them. In fact, in the arrange a meeting example, I used a
second window to run the calendar program. This example suggests
that window systems can better support activity management if they
allow the user to link related windows and treat them as a manipulable
unit. So, for instance, the "close" and "open" functions would close and
open all of the windows together. This is discussed further in Chapter
14 by Reichman.

We can go one step beyond the use of multiple windows in support
of an activity and consider using multiple screens. By a "screen" I mean
a collection of windows that fill the computer's screen. The Symbolics
Lisp Machine demonstrates the potential of this approach. This
machine is organized around a few general-purpose tools which are
integrated so that they can all be used in concert to perform an activity
(typically the development of a program). In the process of debugging,
the user may have one screen which contains a window for source
code, a window for giving commands (the "lisp listener" and
"debugger''), and a window for the running program's interface (the
"application"). A second screen may contain the file system editor, a
third screen the "flavor examiner," and a fourth screen the data
structure "inspector." When one screen is active, there is no visible
trace of the windows associated with the other screens. In normal use,
then, the user will hop amongst screens in the course of performing a
single activity.

252 ALLEN CYPHER

Multiple Activities and Single Programs

The other way for a mismatch to occur between activities and programs
is for more than one activity to call upon a single program. This lack of
correspondence between activities and programs also leads to activity
management problems. The potential difficulty with sharing a program
is that the two activities will each want to establish their own contexts,
but since the program only has one set of context variables, the con
texts will clash. The one activity's setting of a context variable will get
clobbered each time the user switches to the other activity.

Context Clashes

In the "three interleaved activities" example, the first activity (read
mail [1]) and the third activity (msg conversation [3]) used the same
program (the "mail" program), so there was the potential for a clash.
The main context variable in the mail program is the "current message"
variable. Commands to "display message X" or "display next message"
make use of this variable. In the "read mail" activity, I read messages 1
and 2 by using the "display message # 1" and "display next message"
commands. This set the "current message'' variable to 1 and then to 2.
Next, I repositioned the history window [2] and then went to the msg
conversation activity. Suppose that in that activity I had chosen to
"read the message from J," which happens to be message number 8.
This would have set the "current message" variable to 8. Had I done
this, when I returned to the original read mail activity and asked to
"display next message," I would have been shown message number 9
instead of the desired message number 3. I was lucky in the real exam
ple because I chose to "send a message to J'' rather than "read the mes
sage from J," and sending does not affect the "current message" vari
able.

As another example of context clashes, consider multiple-buffer edi
tors such as Emacs. A "multiple-buffer' editor allows the user to edit
several different files from within a single instantiation of the editor
program. The editor handles this by maintaining a full complement of
context variables for each of the files in question. This feature can be
used effectively for single activities involving multiple files. As such, it
is a good example of a design which anticipates the needs of the user.
If you decide to change the word "brother' to the word "sibling"
throughout a set of six files, you can do this in a single operation.
However, this feature can also be used to perform multiple activities

12. THE STRUCTURE OF USERS' ACTIVITIES 253

within a single editor. This opens up the possibility of the word
"sibling" cropping up unexpectedly in files belonging to an unrelated
activity that just happened to be in the way.

While-I'm-At-It Activities

A third example of context clashes occurs with "While-I'm-At-lt" activi
ties. A common example of "While-I'm-At-lt" activities occurs when
you are looking at a listing of files and happen to notice an outdated
one-it is convenient to just delete the file right away and then con
tinue on with whatever you were doing. Technically, you have inter
leaved an activity ("delete file" in this example) that is completely unre
lated to your primary activity except for the fact that it occurs within
the same context or environment as the primary activity. That is, the
two activities share exactly the same context but their goals have noth
ing in common: I refer to such activities as "While-I'm-At-lt" activities.
In Figure 12.1 there is an example of a "While-I'm-At-lt" activity
(delete outdated message [9]) which occurs as a quick digression from
msg conversation [3].

Handling context clashes. It is valuable for program designers to
try to anticipate the typical "While-I'm-At-lt" activities for their applica
tion. For these activities, it is possible to resolve the potential context
clash by ensuring that the "While-I'm-At-lt" activity does not change
the setting of any context variables. For instance, consider the "current
message" variable in the mail program. In order to read my first three
messages, I would give the commands "display message #1," "display
next message," and "display next message." These commands set the
"current message" variable to 1, 2, and 3, respectively. But suppose I
interrupt my reading after the second message, and delete message
number 8. Now what will happen when I give the "display next mes
sage" command-will I see the desired message number 3, or will I
instead see message number 9? It would have been natural and con
sistent to make the "delete message" command change the value of the
"current message" variable to the message after the deleted one. For
tunately, the designer was more clever: The "delete message" com
mand leaves the "current message" variable unchanged, so in fact I will
see the desired message number 3.

The success of this design approach-of allowing for simple opera
tions which will not alter the user's overall context-is dependent upon
the fact that "While-I'm-At-lt" activities tend to be short and self
contained. When unanticipated difficulties arise and the digression

254 ALLEN CYPHER

becomes more protracted, the user may regret not having performed it
as a separate activity.

But what about the more complicated types of context clashes?
How can we handle the case of msg conversation clashing with read
mail? A partial solution is to design modularity into the program. The
program is segmented into several subparts, each with its own context
variables. The idea is to group together commands whose use typically
coincides with a common user subactivity. Then if multiple activities
call upon different subparts of the program, they will be able to use the
same program without clashing. For instance, the mail program has a
subpart for sending mail which is distinct from the subpart for reading
mail. This accounts for the fact that msg conversation and read mail
shared the same program without clashing. However, it is inevitable
that two activities will eventually want to access the same subpart of a
program, so segmenting cannot be considered a complete solution to
the problem. A more involved msg conversation would eventually
have caused the value of the "current message" variable to be changed.

The most direct solution to the problem of clashing contexts is to
call up separate instantiations of the program for the different activities.
This way, the user has a complete, independent set of context variables
for each activity. This solution is commonly used with text editors.
Which file is being edited is such an important context variable that a
user who wants to edit two unrelated files will generally choose to
invoke two separate instances of the editor.

One drawback to separate instantiations is that there is a time
penalty for the user in starting up a new instance of the program. A
more interesting drawback is that the two instances will have no con
text in common. This hardly seems a problem, since I have been assi
duously attempting to avoid shared context. But in the next section on
"Related Activities" I discuss situations where some sharing is impor
tant.

A fourth solution is to design activity management explicitly into
the program. In this approach, the program eliminates clashes by keep
ing separate copies of its context variables for each different activity.
When some shared context is desired, some of the variables can be
shared, and separate copies can be made for the others.

I wrote a program called Notepad which adopts this approach. It has
special "Interrupt" and "Resume" commands for switching amongst
activities. Because it is so easy for users to engage in multiple activities
within Notepad, the history flowcharts show considerably more inter
leaving when it is used. An example can be seen in the latter part of
Figure 12.1 (activities [16]-[19]). Notepad falls short of the goal of
true activity management because it only remembers a single note for

12. THE STRUCTURE OF USERS' ACTIVITIES 255

each frozen achvtty. This is quite analogous to the example where
UNIX would freeze the calendar program but be unaware that the mail
program was part of the same activity. An improved Notepad would
allow groups of notes to be manipulated as a single unit. Another way
of saying this is that there needs to be a context variable called "current
activity."

When activity management is explicitly designed into a program, it
yields the added benefit that its features are available for managing the
subactivities of any activity which uses that program. Consider a com
plaint that I have heard about our mail system: In the middle of com
posing a message, the user realizes that a copy of the message should
be sent to a third party. The mail program has a "compose" command
(it is called "input" mode) for composing messages, and a "cc:" com
mand for sending copies. But the "cc:" command cannot be used while
in "input" mode-that is, the "composition" subactivity cannot be inter
rupted by the "cc:" subactivity. So the user waits until the text is com
plete, intending then to add the cc line. But the user forgets and sends
the message, forgetting to use the "cc:" command. A similar frustration
occurs when a user is composing an answer to a message and finds it
impossible to view the message that is being answered.

Explicit activity management within the program could remedy these
situations by allowing the subprograms to be individually interruptible.
The program would manage its subprograms in the same way an operat
ing system manages its programs.

Related Activities

My focus so far has been on interleaving activities that are not related
to each other. For instance, the activity of arrange a meeting [3] had
nothing to do with the activity of read mail [1]. In situations of this
sort it is perfectly reasonable to assume that the user is unconcerned
with the one activity while busy with the other. If the previous activity
remains on the screen, it is only as a reminder of its existence; it has
no bearing on the execution of the latter activity. In contrast, there are
numerous important situations where the interleaved activities are
related to each other. The most common source of related activities is
subactivities. Consider the situation where you are answering a message
and you need to take a look at the message that is being answered. The
subactivity of "looking at the message" is related to the "answering the
message" activity: You are looking at the message in order to help you
carry out your answering activity.

256 ALLEN CYPHER

Simultaneous Interaction

In cases of related activities, the user (a) wants both of the activities to
be visible simultaneously; (b) wants to be able to interleave commands
to the activities; and (c) wants to be able to pass data back and forth
between the activities. We can summarize this by saying that users
desire "simultaneous interaction" with related activities.

How can systems accomplish this simultaneous interaction? Making
both activities visible and receptive to commands can be achieved by
using windows, and a limited degree of data-passing can be achieved
through "cut and paste" facilities. But full data-passing, which honors
the contrasting data types of different programs, is a complex problem
requiring a sophisticated programming effort (See Chapter 11 by Mark).
The arrange a meeting [5] activity illustrates the need for data-passing.
In that example, I consulted a calendar as a subactivity and used a
second window so that the calendar would be visible while I continued
composing my message in the mail program. If the information
displayed by the calendar program had been complex, I might have
wanted to copy its display into my message.

Shared Context

In the arrange a meeting example, it was necessary for the system to
provide special support in order to facilitate "simultaneous interaction."
The reason for this is that the subactivity used a different program
from the main activity. In cases where subactivities use the same pro
gram, there is no difficulty in viewing both activities, giving them com
mands, and passing data between them. In fact, since there are no such
problems, it is unlikely that the user will even be aware that multiple
activities are present. However, related activities which share the same
program have their own special problem: The issue of"context clashes''
which I discussed earlier is now complicated by the need for a certain
amount of "shared context." This problem is best explained by an
example. Suppose I am busily fixing a bug in a program, using the
text editor to modify the code. I run into a problem so I send a mes
sage to a colleague for help. While waiting for the reply, I decide to
work on another bug in the same program. This is a situation where
two subactivities are interleaved. The special twist presented by situa
tions of this sort is that the subactivities have some context which is
shared and some which is unshared. The shared context is that they
are both modifying the same file. The unshared part is that each sub
activity will want to establish its own markers into the text, its own set
of strings that are saved in buffers, and its own independent command

12. THE STRUCTURE OF USERS' ACTIVITIES 257

history. If I just continue to use the same editor, I will mix the mark
ers, buffers, and history of the former subactivity with those of the
current one. On the other hand, if I start up a new instantiation of the
editor, the two editors will develop clashing versions of the shared file.
What I really want to do is to start up a new editor which inherits the
shared context of the two subactivities and which creates its own con
text for the unshared part.

The Emacs editor has a facility which approximates this: it is called a
"recursive editing level," and it has the effect of invoking a new
instance of the editor inside of the original instance. The new instance
shares some context, such as the file and the location pointers, but it
maintains its own command history. Deciding which parts of the con
text to share and which to separate is a complicated question which
must be tailored to the expected needs of the application. The recur
sive editing level in Emacs is mainly used within long, complicated
commands, so that the user can make a few changes without having to
abort the complicated command.

The principle of recursive instantiations forms the basis for another
highly successful program, the "break" package, which is found in many
LISP systems. The "break'' package allows a user to nest subactivities
(and sub-subactivities) within other activities in an attempt to resolve
subproblems that crop up while working on other, larger, problems.
Each subactivity inherits the complete context of its parent activity.

REMINDING

Users engaged in many different activities can appreciate some assis
tance in keeping track of those activities. If some of the cognitive bur
den of keeping track of activities is removed, users can concentrate
more on actually performing the tasks, instead of spending their ener
gies on remembering and scheduling those tasks. Chapter 13 by Miyata
and Norman discusses ways for assisting users in remembering their
activities.

Windows Are Not the Whole Solution

Windows and icons provide one way to remind users of interrupted
activities. They can be quite effective-up to the point where the
activities become so numerous that they clutter the screen. At this
point, it may prove more effective to replace the jumble of overlapping
windows with a more concise list of titles or descriptors of the activities.

Another way (besides clutter) that visual reminders lose their effec
tiveness is when they are not easily associated with their activities. In

258 ALLEN CYPHER

the same way that activities need not correspond one-to-one with pro
grams, it is also true that activities need not correspond perfectly with
windows. When there is no visible unit on the screen that is uniquely
associated with an activity, there will be no direct way to be reminded
of that activity. For instance, the display of a calendar program may
not serve as a useful reminder for an activity that the user conceives of
primarily as sending a message. Likewise, if a window is being used by
three different activities at once, it cannot effectively remind the user
of all of those activities.

Given the shortcomings of windows as reminders, it is interesting to
note how far the Symbolics Lisp Machine has moved away from the
simple use of windows as reminders. One reason for this is that it
makes such extensive use of windows within a single activity that most
of its window operations (moving, reshaping, etc.) are commonly
enlisted to serve the current activity. In order to compensate for this,
there are special predefined keys for retrieving particular windows (e.g.,
the "Lisp Listener" window or the "Flavor Examiner" window) or the
"previous" window. This obviates the need for a window to be visible
in order to select it.

Reorienting

Once you have successfully located the activity you want to resume,
you may still be in need of some assistance from the computer: If you
are returning to an activity after a lengthy digression, you may have dif
ficulty remembering where you left off. It is generally the case that
you need more information to resume an activity than you need when
you are engrossed in performing that activity. For this reason, it is
valuable if systems can provide additional visual and contextual cues to
reorient the user who is trying to resume an activity. Text editors, for
instance, maintain a considerable amount of hidden information: There
are buffers containing text to be copied or moved, and pointers to
important locations in the file. On returning to an editing session,
then, it may be very helpful if the editor lets you display the contents
of these buffers and pointers. Also, a "movie" of earlier screen images
and a listing of the commands given prior to the digression may help
you to remember where you left off.

User-Centered Activity Management

I have emphasized the distinction between a user's activities and a
computer's programs. The interfaces of traditional operating systems
take the computer's programs to be central and leave it to the users to

12. THE STRUCTURE OF USERS' ACTIVITIES 259

manage their activities. What if the interface took the users' activities
to be central? This means that the top-level units that mediate the
users' interaction with the computer would be activities rather than pro
grams. Of course, the users would still have to deal with computer pro
grams, but the programs would now occupy the second tier of concep
tual units. The interaction would be "user-centered."

Let me describe a session on a hypothetical system with this sort of
"activity manager." The interface will maintain an "activity list" of all of
the activities which I have started but not completed. In addition, it
will have available a list of recent activities which have been completed.
The reason for including a list of completed activities is that the history
lists which I have examined contain a surprising number of cases where
an activity that was presumed to be complete is "resurrected" some time
later. A glance at Figure 12.1 will convince you that reposition win
dow(2) is an example of a resurrected activity, and that arrange a meet
ing [5] was resurrected later that day. This list of completed activities
will serve a function similar to an "undelete" command.

An activity manager that keeps a list of all interrupted activities
opens up the possibility of maintaining activities across sessions with
the computer (Bannon, Cypher, Greenspan, & Monty, 1983). The
activity of writing a program, or a paper, may span several weeks, and it
would be convenient for the system to keep track of your progress on
such an activity and the associated computer context. There are also
activities which one wants to perform once a day, or once a week. An
activity manager could insert reminders for these tasks into the activity
list. Furthermore, such an activity list could be conveniently used as a
"todo" list-a place to jot reminders about tasks that need to be done in
the near future. The "displacement activities", which are discussed in
Chapter 17 by Owen, also have a place in the activity list. These activi
ties are special, in that the user ordinarily wants them hidden from
sight. But at those times when the user has nothing special to do-or
actively wants to avoid some particular chore-this list of diversions
could be consulted.

When I log on to my computer at the start of the day, it displays the
screen just as I left it when I logged off. The activity list reminds me
of things I have to do, and the windows for my current activity are
already open. I choose to read my new mail first, so I temporarily hide
away the current activity. Since all of its windows are linked, they all
disappear at once, leaving me with an uncluttered screen. I read my
mail and move two of the messages to my activity list. They are
automatically assigned their own instantiations of the mail program
which will handle any future correspondence on these topics. Finished
with my mail, I push the "Resume" key. I need not recall what the

260 ALLEN CYPHER

original activity of the day was, as the activity manager has remembered
this for me.

A few minutes later, the "debug program W' item in my activity list
begins to flash. I select this activity and see that my colleague has
answered my query. She has figured out how to fix this troublesome
bug, so I make the change and recompile the program. Without waiting
for it to finish, I return to my original activity and complete it shortly
thereafter. I then decide to make a modification to a paper I am writ
ing, but suddenly the phone rings, so I jot "clarify X" on my activity list
and grab the phone. The caller informs me of a terrible bug in program
Y, so I turn to my table of"standard layouts'' and select a "debugger."

Because certain common activities (like debugging) always require a
particular set of programs, and because users become accustomed to
certain ways of laying these programs out across various windows and
screens, the activity manager maintains a table of a user's "standard lay
outs." So when I select the "debugger" layout, a collection of useful
tools arrange themselves on my screen.

I soon tire of the debugging chore and I look for a change of pace. I
see several choices in my activity list, but I am unable to recall what
they refer to. So I ask for more information, and I am treated to mini
ature displays of the various activities. For some activities I am shown
a miniature screen, for others, a particularly representative window.
For yet another activity, a short descriptive paragraph that I wrote
months ago appears. Chapter 16 by Draper suggests various ways for
allowing the user to choose the amount and type of information that is
displayed for each activity.

The Notepad Program

The Notepad program implements some of these ideas about activity
management. Like the ThinkTank program for personal computers, it
is designed as a tool for "thought-dumping" -the process of quickly jot
ting down a flood of fleeting ideas. Thought-dumping places a prem
ium on the ability to record an idea with the minimum of interference.
In Notepad, notes are organized by assigning titles to them and filing
them in bins. These operations can be postponed arbitrarily so that
they will not interfere with the process of jotting down ideas. In addi
tion, the process of writing a note can be interrupted at any time by the
Title and File commands.

Notepad has explicit activity management commands. If the current
idea is suddenly interrupted by a new idea, the user gives the "Inter
rupt" command. This puts the current idea on an "Interrupted Notes''
stack and supplies a blank page for the new note. The stack is

12. THE STRUCTURE OF USERS' ACTIVITIES 261

constantly displayed to the user and serves as a reminder of interrupted
ideas. When the new note is complete, the user gives the "Resume"
command to resume the interrupted idea.

The use of a stack means that Notepad embeds activities; resuming
activities in an arbitrary order is not supported as well. Notepad sup
ports postponing with a special "Jot" command, which allows the user to
jot down a short reminder about a new idea without having to leave the
current idea. This gets the idea out on the table and allows Notepad to
remind the user to pursue it.

Problems With Activity Management

An activity manager can take over some of the user's burden of manag
ing activities, but it is restricted by what it knows about the activities.
Many user activities are performed only partly on the computer. Vari
ous subactivities and meta-activities may be performed by talking to a
colleague or by simply remembering them. This can cause significant
problems for an activity manager because there are arbitrary holes in its
picture of the activity. If the user consults an on-line manual, the com
puter can remember this activity when it is interrupted. But if the user
consults a printed manual, or a local expert, the manager will be
unaware of the activity. Similarly, a user who interrupts the activity of
debugging a program may be unable to remember where to pick up the
task once it is resumed, because the interrupted activity was some com
plicated reasoning process that was totally within the user's head.

ACKNOWLEDGMENTS

I would like to thank Autumn Chapman for designing the original
activity flowcharts, and Steve Draper and Dave Owen for providing
many helpful comments. I would also like to thank Don Betts for
designing and drawing Figure 12.1. The impetus for the study of
activity structures came from the Activity Structures working group,
consisting of Lissa Monty, Liam Bannon, Steve Greenspan, and myself.
This early work was published as "Evaluation and Analysis of Users'
Activity Organization" (Bannon, Cypher, Greenspan, & Monty, 1983).
This group developed many new ideas about creating a complete work
ing environment for each user activity. I am particularly indebted to
Lissa Monty for her ideas about gathering history list data, and to Liam
Bannon and Steve Greenspan for their ideas about workspaces.

262 ALLEN CYPHER

APPENDIX: COLLECTING HISTORY DATA

Activity flowcharts are prepared from an "annotated history list"-a
record of all of the commands that the user types during the computer
session. The history list records the linear stream of commands that
the user performs to carry out his or her activities. If activities are per
formed one at a time, the commands will cluster into neat, separate
packets, whereas an interleaved activity will have its commands sprin
kled throughout the historical record. I refer to these lists as "anno
tated" because users can add explanations of what they are doing, as
they are doing it.

The history list used in this chapter was recorded from a Sun
Workstation, that has a bit-mapped display and a window system. It
uses Berkeley UNIX. Because this system uses both windows and the
Stopped Jobs facility, it provides considerable support for multiple user
activities. Had these data been collected from a personal computer, I
would expect the results to be quite different. The software currently
available on personal computers is generally quite unsupportive of mul
tiple activities.

To record these data, the major interactive programs on the
system-the top-level (shell) interface, the text editor, the mail pro
gram, and the note program-were modified to send a parsed copy of
every command to a central collection program. The collector receives
commands from all of the windows in whatever order they are per
formed, so that embedded activities show up as embedded commands.
A segment of a history list is shown in Figure 12.2.

This collection technique has an advantage over the standard tech
nique of recording keystrokes in that it lets each program parse the
input string into a meaningful command. However, it is important to
note the limitations of this history-list data. Only the user's commands
are recorded; there is no record of the computer's responses or of com
puter initiatives (such as "you have new mail"). This unfortunately
reinforces the stereotypical view that "the user commands, the com
puter performs." It makes it difficult to appreciate situations where the
user and the computer are working together, like co-routines, and situa
tions where the computer is initiating activities.

Another problem is that the history list includes only those parts of
the activity which actually take place on the computer. For instance,
consulting another person is an unrecorded activity, so social interac
tions of the sort discussed in Bannon's Chapter 21 are missing from the
record. The user can mitigate this problem somewhat by making anno
tations about relevant unrecorded activities.

12. THE STRUCTURE OF USERS' ACflVITIES 263

9,.~
\)fO gefo

l\oo\fC\8 C\:a"e\\) # en\& Activity in
no\8\)a\d, \C\do"'co~fC'•C\:0~~·nd 088, co~~ Figure 1 2.1

('>»wi. ... d~-Ohyoo,..,.<oP· (!)
tm6 23. Open~ ~ np6 24. Digress to < 606:fmt>
tm1 25. Expose
tm6 26. Expose
csh1 27. rlogin sdcc6 -llx224
tm1 28. Expose
tm6 29. Expose

csh1
msg1
tm1
msg1

csh1

tm6
np6

tm1
csh1

> > > > > helped A- with a vi problem.
>>>>>new mall
30. msg
31. (t)ype (l)ast IS-
32. Expose
33. (a)nswer (c)urrent IS-
34. (t)ype (p)revlous lw-
35. (d)elete (l)ast lcypher
36. (h)eaders (a)ll messages

Re: mail problem

Re: mall problem
new lcsl macros
Re: Re: mail problem

> > > > > to see that I have deleted new msgs
37. (d)elete 3 4
38. (q)l.it
> > > > > now im popping back through new
> > > > >mail and A-, to snd P-
39. snd P-
> > > > > Interrupted send. I should set up the
> > > > > consuHants account first, so I can tell her
> > > > > it's done. How to log on to her account?
40. Expose
41. Visit <910: P- >
42. Down
> > > > > this isnt right. She has an account on s6
> > >>>which I don't show here.
43. Digress to < 525:rlogin s6 -llx816>
44. Digress to < 524:rlogin to s6>
45. Resume < 525:rlogin s6 -llx816>
46. Digress to < 910: P- >
47. Input: P-'s, (not m-'s)
48. Create < 1077>
49. Destroy < 1077:>
> > > > > I had misunderstood my note.
50. Resume < 1071:starting the chapter>
51. Expose
52. rlogln sdccs6 -1 lx816

®

FIGURE 12.2. A segment from the annotated history list for the session shown in Fig
ure 12.1.

