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Abstract

In this study, we develop a theoretical model that predicts an inverted-U relationship between multitasking and performance. The

model is tested with a controlled experiment using a custom-developed application. Participants were randomly assigned to either a

control condition, where they had to perform tasks in sequence, or an experimental condition, where they could discretionarily switch

tasks by clicking on tabs. Our results show an inverted-U pattern for performance efficiency (productivity) and a decreasing line for

performance effectiveness (accuracy). The results of this study indicate that the nature of the relation between multitasking and

performance depends upon the metric used. If performance is measured with productivity, different multitasking levels are associated

with an inverted-U curve where medium multitaskers perform significantly better than both high and low multitaskers. However, if

performance is measured with accuracy of results, the relation is a downward slopping line, in which increased levels of multitasking lead

to a significant loss in accuracy. Metaphorically speaking, juggling multiple tasks is much more difficult while balancing on a high wire,

where performance mishaps can have serious consequences.

& 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Is it really possible to juggle while walking on a high
wire? Human multitasking has reached new heights these
days and its effects on performance are not yet clear. Some
researchers underscore the negative impacts of multitask-
ing on task performance, particularly when multiple
tasks interfere with each other and this juggling produces
obstructions or distractions (Aral et al., 2006). Alterna-
tively, others argue that multitasking can be conducive to
better outcomes by promoting a more productive use of
time, allowing ideas to mature or encouraging healthy
breaks from complex tasks (Madjar and Shalley, 2008).
Despite this debate, juggling multiple tasks with and
without technological devices is a common practice at
home, at school, at work and even during meetings
(Benbunan-Fich and Truman, 2009; Gonzalez and Mark,
e front matter & 2011 Elsevier Ltd. All rights reserved.
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2004; Hembrooke and Gay, 2003; Mark et al., 2005;
Wasson, 2004).
To a great extent, modern technology platforms enable

and amplify multitasking. For example, contemporary
operating systems in personal computers are designed to
accommodate multitasking by allowing users to work on
more than one task concurrently. Even current web
browser interfaces provide tabbing capabilities to facilitate
the performance of simultaneous web-based activities.
Given the pivotal role of Information Technology in
multitasking, our research is focused on computer-based

multitasking behavior. We are particularly interested in the
consequences of performing several unrelated computer-
based tasks with a single technological device and in a
specific period of time. By concentrating exclusively on
computer-based tasks, and excluding all other concurrent
tasks, such as for example eating or watching TV while
using the computer, we seek to shed some light on the
patterns and consequences of multitasking behavior.
Investigating multitasking behavior is particularly impor-

tant for Human–Computer Interaction (HCI) researchers.
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Although this is not a new area of research in HCI, it has not
been the focus of intensive study (McCrickard et al., 2003b).
This gap is more noticeable given the prevalence of multi-
tasking behavior nowadays. Because of the popularity of
multitasking, a deeper understanding of this behavior is poised
to advance the HCI literature. Studying the performance
consequences of computer-based multitasking can offer new
insights to inform practitioners about optimal work arrange-
ments and to improve systems that handle notification systems
(McCrickard et al., 2003a) and support multitasking.

Our research question investigates the performance effects
of different multitasking patterns. To this end, we develop a
theoretical model predicting that multitasking behavior is
beneficial until a point of diminishing returns in which
too much multitasking begins to have a detrimental effect
on performance. We test this prediction in a laboratory
experiment using a custom-developed application with sev-
eral tasks. Our results contribute to elucidate the complex
relationship between multitasking and performance. To
describe the study and its findings, the remainder of this
paper proceeds as follows. The next section introduces the
concept and possible strategies for multitasking. This con-
ceptual introduction is followed by the theoretical model,
whose foundation comes from the theory of memory-for-
goals (Altmann and Trafton, 2002) and the Yerkes–Dodson
law (Yerkes and Dodson, 1908). After the theoretical
model, we develop the hypothesis and describe our research.
The remaining sections address data analysis, results, discus-
sion and limitations. The paper concludes by presenting the
contributions of this study and outlining future research
directions.
2. Theoretical background

Multitasking occurs when a user shifts attention to
perform several independent but concurrent computer-
based tasks. Benbunan-Fich et al. (2011) articulate two
key principles to define multitasking, namely, task inde-
pendence and performance concurrency. While the princi-
ple of independence suggests that ongoing tasks are self-
contained, the notion of concurrency implies that these
multiple tasks are carried out with some temporal overlap
in a specific period of time. Depending on the amount of
overlap, multiple tasks can be temporally organized fol-
lowing three different strategies, namely, sequential, par-
allel and interleaved. Each of these strategies implies a
different degree of concurrency among ongoing tasks.

In a sequential strategy, each task starts after the
completion of the previous task (Bluedorn et al., 1992).
Since in this mode the level of concurrency is zero, it can be
argued that this strategy is not consistent with the typical
conceptualization of multitasking where individuals are
juggling several ongoing activities. Although there is no
task overlap, the sequential approach can be useful to
establish a baseline case for comparing performance effects
with other multitasking approaches.
In a parallel strategy, all concurrent tasks are attended to
at the same time (Bluedorn et al., 1992). As such, there is a
maximum degree of concurrency or overlap. In practice,
however, true parallel performance is difficult to achieve
because human attention cannot be simultaneously divided
among many tasks, unless different types of attention are
required as in the case of writing and listening to music at the
same time (Salvucci and Taatgen, 2011). When attention
shifting occurs at the cognitive level, it appears as if the two
tasks are carried out in parallel. Given our interest in
computer-based multitasking, we focus on situations where
task switching is observable.
In an interleaved strategy, a task underway is voluntarily

or involuntarily suspended to allocate attention to another
task. Eventually, the original task is resumed but once
again it is willingly abandoned or externally interrupted
to attend to other tasks (Payne et al., 2007). The most
common manifestation of this multitasking strategy is
through task interleaving or task switching. This form of
multitasking where different tasks are interleaved or inter-
spersed is the most typical for computer-based activities.
Instead of categories, a more recent view of multitasking

articulates the differences in terms of a continuum by
noting the typical time spent on one task before switching
to the other (Salvucci and Taatgen, 2011). At one extreme
of the multitasking continuum there are tasks that involve
frequent switching, perhaps every second or more often as
in a normal conversation (i.e. talking while driving). This
could be characterized as concurrent multitasking because
the tasks are, in essence, performed at the same time. This
characterization is similar to our description of parallel
task performance presented above. At the other extreme,
there are tasks that involve fairly long spans between
switches. This could be characterized as sequential multi-
tasking because a longer time (measured in minutes or
even hours) might be spent on one task before switching
to another. Unlike the non-multitasking-sequential case
described above, in this situation, tasks have not been
completed when there is a switch and therefore, this is an
instance of multitasking. In this view, concurrent and
sequential multitasking can be represented on the same
continuum. Since these are the extremes of the continuum,
our description of the task interleaving presented above,
can be interpreted as representative of the situations in the
middle of the multitasking continuum.

2.1. Memory for goals

Cognitive psychologists have proposed several theories
to explain the mental processes that account for decreased
task performance in multitasking situations (Meyer and
Kieras, 1997). This body of literature explains the relation-
ship between task concurrency and performance, primarily
in the context of a dual task paradigm. Although the
psychology literature has devoted comparatively less atten-
tion to user-defined tasks and goals and voluntary task
switching, there are theories particularly well-suited to
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explain the relation between multitasking and perfor-
mance. One of these is ‘‘memory-for-goals’’ (Altmann
and Trafton, 2002). In this theory, a goal is defined as ‘‘a
mental representation of an intention to accomplish a task,
achieve some specific state of the world, or take some
mental or physical action’’ (p. 39). The memory-for-goals
theory posits that in order for people to initiate a new task,
its goal must be strengthened in memory to the point
where its activation rises above other goals (Salvucci et al.,
2009). This theory explains hierarchical problem solving by
allowing a high-level goal to be decomposed into sub-
goals. It also explains multiple task performance through
the goal-activation process. Activation is the process
whereby goals move up and become the focus of attention.
The newest (or most recently activated) goal is the one
that directs behavior, while the old goals are postponed
(Altmann and Trafton, 2002).

Two different conditions cause active goals to be
suspended or set aside temporarily in favor of new goals
(Salvucci and Taatgen, 2011). The first possibility is an
external interruption that requires immediate attention and
produces a displacement of the current goal. This displace-
ment results in a reorganization of goals in memory as
people formulate the intention to resume the interrupted
task later. The second possibility is a voluntary decision to

stop the current task (or break) due to an obstacle that
prevents its completion. This blockage causes the active
goal to be suspended and allows for another goal to
become the focus of attention until conditions change
and the abandoned task can be resumed. From these two
goal-displacement conditions (external interruptions and
self-imposed interruptions), we are primarily interested in
self-interruptions, where the empirical literature is sparse.

Due to the discretionary nature of self-imposed inter-
ruptions, the effects of voluntary task switching on
performance are less clear than those documented in the
interruptions literature, where there is an extensive body of
work (Bailey and Konstan, 2006; Gillie and Broadbent,
1989; McFarlane, 2002; Speier et al., 2003). Some empiri-
cal studies have begun to shed light into the drivers of
discretionary task interleaving, a necessary first step
toward studying their relation with performance. For
example, Payne et al. (2007) found that voluntary task
switching is motivated by either the propensity to tem-
porarily abandon a task that is no longer rewarding or by
the tendency to switch to an unrelated task when a sub-
task is completed. In addition, Madjar and Shalley (2008)
report that individuals had the highest creativity when they
had the discretion to switch tasks, and each task had a
specific goal. In the discretionary switching condition, the
goals served to focus the participants’ attention on work-
ing hard on the tasks, and the ability to switch at will
afforded them the ability to take a break if needed and
work on another task to refresh or clear their heads.

Memory-for-goals theory is useful to articulate two
different conditions for goal displacement. In an internal
self-initiated interruption, the user decides at her discretion
to shift goals and perform a different task. The newly
activated goal and associated task are entirely at the
discretion of the user. However, in an external interruption
the electronic notification indicates the new task and goal
that require attention. The discretionary nature of self-
interruptions poses an intriguing dilemma for analyzing
the effects on performance. On the one hand, it is possible
that some amount of task switching is better than no
switching at all, as people get additional stimulation or
arousal that leads to improved performance. On the other
hand, it is also possible that swift task changes create an
environment of confusion where an individual is unable to
perform each task adequately due to overload or excessive
arousal (Monsell, 2003; Palladino, 2007).

2.2. Yerkes–Dodson law

Research in psychology has found evidence of a curvilinear
relationship between arousal and performance, which is
typically known as the Yerkes–Dodson law (Yerkes and
Dodson, 1908). According to this law, there is an optimal
amount of arousal that leads to the best performance, while
very low or extremely high levels of arousal lead to sub-
optimal performance. The law is attributed to Yerkes and
Dodson because they were the first to document this
inverted-U relationship. In their pioneer study in 1908, they
found that when mice were given a difficult discrimination
task their performance improved linearly with low and
moderate levels of arousal. However, at the highest levels
of arousal their performance was impaired forming an overall
non-linear or inverted-U shaped relationship between arousal
and performance. While there are numerous criticisms to
Yerkes and Dodson (1908) – including the mice-to-man
extension of their findings, their failure to systematically
measure and control arousal in mice and the lack of
statistical analyses – this work has been replicated with other
living organisms and with people in different contexts (Miller,
1978; Staal, 2004).
In its initial formulation, the Yerkes–Dodson law intended

to explain the relation between stimulus strength and habit-
formation for varying degrees of task difficulty (Teigen,
1994). Over the last century, this law has been used to
explain the effects of reward, motivation, arousal, and stress
on learning, performance, problem-solving or memory
(Bäumler, 1994). Teigen (1994) presents a discussion of the
origins, evolution and applications of the Yerkes–Dodson
law. Some researchers have even questioned the validity of
the original law. In a critical review of the findings initially
reported by Yerkes and Dodson, Bäumler (1994) reexamined
the original data and concluded that this law perhaps never
existed. Despite its detractors, the versatility of the law and
the intuitive appeal of a curvilinear relationship have made it
attractive to explain relations in various contexts and elevated
its status to become a fundamental law in psychology
(Teigen, 1994).
Empirical support for the inverted-U relation has been

mixed depending upon the context in which it is applied.
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For example, Muse et al. (2003) note that the relation has
received scant support in the stress literature but ample
support in the arousal/activation literature. Arousal refers
to the psychological reactions that cause a person to be
alert and attentive (Muse et al. 2003). At low levels,
performance is impaired by a lack of alertness, while at
high levels performance is characterized by a total dis-
organization of responses.

People’s level of arousal fluctuates with different work
demands. Increasing load produces a rise in arousal in
order to mobilize cognitive resources (Kahneman, 1973).
It can be argued that, at one extreme, under minimal
amounts of arousal, people lack motivation to stay focused
on the task at hand and their performance is likely to
suffer. It is possible that a second task induces an increase
in arousal to improve performance of the first task.
However, at the other extreme, under high levels of
arousal, humans might be unable to cope with the
demands of the situation and their performance decreases.
These extremes can be labeled as under-load and overload,
respectively (Wiener et al., 1984). While under-load leads
to a reduction in alertness and lowered attention, overload
has an opposite effect, leading to distraction and inter-
ference, thus, the inverted-U relationship between arousal
and performance. Performance is best in the middle of the
curve, where people are in a relaxed-alert state (Palladino,
2007).

These differential effects of arousal on performance have
been further explained in terms of information processing.
The awareness of a pending task uses some resources because
of ‘‘invisible’’ processing of irrelevant cues (Navon and
Gopher, 1979). While it may not be detrimental at first,
increased invisible processing of irrelevant cues, associated
with pending tasks, is likely to produce performance degra-
dation (Norman and Bobrow, 1975). With increased arousal,
fewer cues are processed, excluding task-irrelevant cues,
which help performance. However, at the highest levels of
arousal, even task relevant cues are discarded, which results
in impaired performance. Arousal increases attention and
persistence but reduces the efficiency of information proces-
sing to a point where higher levels of arousal produce
information processing deficiencies that result in suboptimal
performance (Muse et al., 2003).

2.3. Hypothesis development

Multitasking situations present a resource-allocation
problem to humans because they must decide how to
assign limited resources (such as time or attention) across
multiple competing tasks to achieve specific performance
goals. In a completely voluntary switching environment,
users exercise discretion on how and when to switch and
whether to switch at all (Yeung, 2010). Therefore, they
may choose to perform tasks sequentially, instead of
interleaving ongoing tasks. From the perspective of mem-
ory-for-goals, sequential task execution implies that one
and only one task goal exists at any given time. In contrast,
interleaving situations require the activation of multiple goals
and the simultaneous management of multiple problem
representations. When people work on several tasks at the
same time, their working memory helps them switch tasks by
storing information related to the abandoned task and
redirecting attention to the new task (König and Oberacher,
2010).
Awareness of multiple goals, as opposed to only one goal

at a time, leads to increased levels of arousal. Working on
several tasks at once requires people to maintain the tempor-
ary state information associated with each task (Borst et al.,
2010). Goal displacement in memory as evidenced in task
switching requires people to recall information associated with
a previously suspended task to resume its performance (Payne
et al., 2007). Constant switching among competing tasks
distracts the user and degrades performance (Rubinstein
et al., 2001). Switching tasks results in slower response times
and increased error rates. The literature provides evidence of
cognitive costs associated with switching between unrelated
tasks (Payne et al., 2007). These costs are attributed to
between-task interference, which typically arise from the
residual tendency to keep thinking about the just-abandoned
task that is now irrelevant (Yeung, 2010).
When people juggle many tasks simultaneously, they

must remember what they left behind when they resume
a previously abandoned task. Some task switching can
be beneficial to increase levels of arousal and mobilize
cognitive resources to handle increased levels of load. This
increased arousal can result in improved performance
(Navon and Gopher, 1979). However, under constant goal
displacement and extreme high levels of arousal, any
potential performance gain is lost due to the high costs
of switching tasks and swapping associated problem state
information in memory (Borst et al., 2010). At high levels,
the failure to completely recall state information of the
abandoned tasks impairs performance.
We posit that different multitasking situations have

differential effects on performance. Thus, we distinguish
different multitasking scenarios based on the amount of
switching between ongoing tasks. In a sequential scenario,
there is only one goal at a time and task interference is
absent. In an interleaving task situation, some amount of
task switching could be beneficial to induce an increased
level of arousal that would lead to making a more
productive use of time, or clearing one’s head. However,
a high amount of switching would be detrimental because
of the difficulties associated with swapping problem repre-
sentations in memory and the resulting task interference.
Therefore, based on the Yerkes–Dodson law, an inverted-U
relationship can be hypothesized where performance first
improves with increases in multitasking levels, and then
drops after reaching high levels of multitasking due to
cognitive overloading and impairment resulting from task
interference. More formally, we hypothesize

Users who engage in multitasking will perform signifi-
cantly better than those who are only slightly multitasking,
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but there will be a point of diminishing returns where
too much multitasking will significantly lower their
performance.

Empirical evidence based on survey data has documented
an inverted-U relationship between multitasking and out-
put. For example, Aral et al. (2006) found that that the
relationship between multitasking and output is non-linear.
In their study, multitasking was defined at the project-level
as ‘‘the act of taking on multiple simultaneous projects in
parallel’’ and productivity was examined in terms of project
completion rates and revenue. Their survey findings indicate
that more multitasking is associated with greater revenue
generation and project output to a point, after which
there are diminishing marginal returns, then negative
returns to increased multitasking. In other words, at lower
levels of workload people who multitasked were more
productive, but after a certain level, multitaskers’ productivity
declined.

While there is evidence of the curvilinear relation
between productivity and multitasking based on survey
data and on a definition of multitasking dependent upon
projects and simultaneity, to our knowledge, there are no
laboratory studies to date testing the inverted-U relation-
ship with prescribed problem-solving tasks. To examine
whether different levels of multitasking produce different
effects on performance, we designed an experiment for
individual users where tasks and times are controlled.

3. Research design

To study the effects of different multitasking strategies on
performance, we developed a custom program consisting of
Fig. 1. Screen shot of exp
six problem-solving tasks. Each task had an objectively
correct answer. Our goal was to provide an experimental
environment with multiple tasks of different duration and
cognitive requirements where tasks interleaving is more likely
to occur (Payne et al., 2007). Participants were given a fixed
amount of time to work on six tasks of different duration
that contributed independently to overall performance.
Using this application, we conducted a laboratory

experiment with two conditions, using a between-groups
design. In the control condition, the tasks were presented
sequentially, and in the experimental condition, the tasks
were presented all at once organized in six tabs. Partici-
pants in the control group carried out the tasks in sequence
with no multitasking, while those in the experimental
condition were able to discretionarily multitask by clicking
on the corresponding tab at any moment. Fig. 1 shows the
main screen of the experimental condition. In both condi-
tions, the application managed total time on each task to
control for the potential effects of time on performance.
Maximum allotted time for the entire exercise was deter-
mined from pilot studies and was set at a limit intentionally
shorter than the average amount of time users would need to
complete these tasks. With such time restrictions, we sought
to create an environment free of gaps (or idleness) due to
early termination of tasks. In addition, to avoid the effects of
task sequence, the tasks were presented in a random order in
the non-multitasking condition, and the tabs were rando-
mized in the discretionary multitasking condition. The main
task, however, was always displayed first.
The main task was a Sudoku problem of medium difficulty.

The goal of a Sudoku exercise is to fill in all the boxes in
a 9� 9 grid, so that each column, row, and 3� 3 box have
the numbers 1 through 9 without repetitions. The maximum
erimental condition.
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allotted time for this task was 18 min; a second Sudoku
problem was available for those who finished earlier. This
type of problem was chosen as the main task because it
requires some mental concentration and a period of time
for accurate completion and verification. Moreover, if this
task is abandoned before its completion, participants need to
remember their previous thought process in order to resume
working.

In addition to the Sudoku problem, there were five
additional tasks of shorter duration, one textual, two visual
and two numeric series challenges. The duration of the
smaller tasks was 1 min and a half for the textual task and
about 1 min for the visual and numeric series. The textual
task consisted of a word production challenge where users
had to create 20 different words by unscrambling the letters
of the word provided. The visual tasks consisted of ‘‘Odd
One Out’’ problems, where users had to find the shape that
did not fit the pattern presented in a series of four other
shapes. There were two visual task sets with ten problems
each. The numeric tasks consisted of number series problems
where subjects had to fill in the missing number in the series.
As in the case of the visual task sets, there were two numeric
series task sets, each with 10 problems.
3.1. Experimental procedures

We recruited subjects from the undergraduate student
population of a large urban college in the Northeast of the
U.S. Participants were randomly assigned to each condi-
tion and received a ten-dollar incentive for their participa-
tion. The experimental sessions took place in a specially
fitted lab with individual personal computers that were
only running the custom-developed application. Partici-
pants were given a handout with the details of the exercise
and instructions tailored to their condition. Those in the
control non-multitasking condition were told that the
system would present the tasks in succession, and those
in the discretionary multitasking condition were told that
they could complete the tasks in any order by clicking on
the tabs. They were alerted to the time limits and the task
requirements.

Before working on the tasks, the application presented
each participant with a pre-test questionnaire to collect
demographic information (gender, age, computer skills,
and previous Sudoku experience). Then, the tasks were
displayed depending upon the condition (one after the
other for the non-multitasking group, or all at once in
different tabs in the discretionary multitasking condition).
Upon completion of the exercise, the application provided
a post-test questionnaire to capture the participants’
perceptions about the exercise. Two of the perceptual
variables measured are perceived Sudoku ease and multi-
tasking perception. Perceived Sudoku ease was measured in a
1–5 scale where 1 is easy and 5 is difficult. The variable was
reversed to indicate ease. The scale used to measure multi-
tasking perception was adapted from Bluedorn et al. (1992).
The items were measured on a 5-point Likert scale
(1¼strongly disagree; 5¼strongly agree):
�
 In this exercise, I switched between the assigned com-
puter-based tasks.

�
 In this exercise, I tried to complete the assigned

computer-based tasks at the same time.

�
 In this exercise, I worked on one computer-based task

at a time (Reversed).

�
 In this exercise, I was carrying out several computer-

based tasks at the same time.

3.2. Measures of variables

To measure multitasking activity we used number of

switches. This variable was determined by counting the
number of times a user clicked on the tabs during the
session. Since each tab contained an independent task set,
the number of switches is representative of task switching.
Other studies (Czerwinski et al., 2004; Payne et al., 2007;
Zhang et al., 2005) have operationalized multitasking with
this type of measure. According to Benbunan-Fich et al.
(2011), switches-related measures are rich measures of multi-
tasking because they combine elements of task, user and
technology. However, instead of the percentage-based metric
for switches proposed in that study, we use an additive
measure. In our case, the number of tasks and times on task
are controlled by our custom-developed environment. Thus,
a simpler count of switches offers a suitable multitasking
metric that is comparable across subjects.
Performance is conceptualized in two dimensions: per-

formance effectiveness, measured with accuracy, and per-
formance efficiency, measured with productivity. Both of
these performance measures were automatically calculated
by the custom-developed application log data generated
for each user.
The accuracy variable was determined with the user’s

scores in each task. Since each task had a correct answer,
the scores were calculated with the number of correct
answers as a percentage of the total answers required. For
example, in the Sudoku task there were 49 empty spaces
that needed to be filled out with the appropriate numbers.
The score was the number of correct numbers entered
divided by the total number of empty squares. For the
word task, there were 20 acceptable words that could be
generated from unscrambling the letters. The percent
correct is the number of correct responses out of 20. The
same method was applied to calculate the visual and
number series tasks’ scores. The total score was computed
by averaging the accuracy scores of all six tasks.
The productivity measure was determined based on the

amount of work completed per task, regardless of whether
the answers were correct. For instance, the percentage of
the 49 empty Sudoku spaces that were filled out, or the
number of words out of 20 that were typed into the word
solution boxes. The total productivity score was computed



Table 2

Means of strategy and performance variables in experimental condition

only.

[N¼103] Mean Std. dev. Minimum Maximum

Number of switches 9.43 5.09 5 29

Accuracy 41.11 13.14 12.94 69.66

Productivity 61.14 12.90 31.89 93.33
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by combining the percentage completion scores across the
six tasks.

4. Data analysis and results

We recruited 205 subjects (90 female and 115 male)
and assigned them randomly to each condition: 102 subjects
solved the tasks sequentially in the Non-Multitasking (NMT)
condition, and 103 were allowed to switch tasks at will in
the Discretionary Multitasking (DMT) condition. To ensure
that randomization worked and to rule out alternative
explanations, we first checked for pre-existing differences
among participants assigned to both conditions. None of the
continuous pre-test questionnaire variables (age, computer
skills or Sudoku experience) showed a systematic variation.
Computer Skills was measured with a 5-point scale (from
1¼poor to 5¼excellent). Sudoku Experience was measured
with a 0–5 scale similar to computer skills, with a 0 for those
who had never played Sudoku before. From the post-test
variables, no differences across conditions are found in the
perception of Sudoku ease. In contrast, there are significant
differences in the perceptions of multitasking as explained in
the next section. Table 1 presents these results.

Gender was coded with a dichotomous variable (men¼0;
women¼1). A separate chi-square analysis for gender shows
that male and female participants were equally distributed in
each condition (w2¼0.65; p¼0.62 ns).

4.1. Manipulation check

The multitasking perception scale was used to perform a
manipulation check. A confirmatory factor analysis of
these items showed a single factor with items loadings of
0.70 or higher, except for one item, which was dropped to
create the index. The reduced scale had a high level of
reliability (Cronbach’s Alpha of 0.796). The multitasking
perception means in the DMT condition are significantly
higher than those in the NMT condition (MeanNMT¼2.48
vs. MeanDMT¼2.84; F(1, 203)¼8.69, p¼0.004). This test
provides evidence of the integrity of the two conditions as
implemented in our custom-developed environment. The
results indicate that users in the experimental condition
Table 1

Descriptive statistics and comparison of conditions.

Mean S.D. Min

Pre-test variables

Agea 21.56 3.26 18

Computer skills 3.80 0.85 1

Sudoku experience 1.65 1.40 0

Post-test variables

Perc’d Sudoku ease 2.85 1.49 1

Multitasking perception 2.66 0.90 1

aOne subject typed an invalid age and was omitted from this analysis.
nnnSignificance level: po0.001.
perceived the environment as involving more multitasking
than those in the control condition.
4.2. Analysis of discretionary multitasking sub-sample

Descriptive statistics of the variables of interest for
participants in the discretionary multitasking condition
are presented in Table 2.
The number of switches for participants in the DMT

condition ranges from 5 to 29. Five switches indicate that
despite the flexibility afforded by this condition, some
participants performed their tasks sequentially and chose
not to multitask. Since there were six tasks/tabs, the
minimum number of tab changes in this condition is five,
which indicates that the participant never returned to a
previously used tab. Participants were able to switch tasks
at any point by clicking on the corresponding tab. How-
ever, if the time limit on a tab was reached that tab became
disabled and the user was unable to return to that task. All
tabs had to be attempted at least once as the multitasking
environment did not terminate until every task/tab’s time
expired. Clicking on the current tab did not increment the
number of switches.
To test our hypothesis, we used number of switches as

the independent variable. We ran two quadratic models on
the DMT sub-sample using either accuracy or productivity
as the dependent variable. In both models, the number of
switches was the main independent variable with two terms
(linear and quadratic). The models also included control
variables such as age, gender, computer skills and Sudoku
experience. The general formula of the quadratic model is:

Y ¼ b0þb1Xþb2X
2þb3Z1þb4Z2þb5Z3þb6Z4þe
Max Comparison results

35 MeanNMT¼21.69; MeanDMT¼21.44; F(1, 202)¼0.31 (ns)

5 MeanNMT¼3.80; MeanDMT¼3.80; F(1, 203)¼0.00 (ns)

5 MeanNMT¼1.67; MeanDMT¼1.63; F(1, 203)¼0.03 (ns)

5 MeanNMT¼2.85; MeanDMT¼2.85; F(1, 203)¼0.00 (ns)

5 MeanNMT¼2.48; MeanDMT¼2.84; F(1, 203)¼8.69nnn
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Fig. 2. Graph of quadratic model for productivity (Model 2).

Table 4

Linear model [N¼103].

Accuracy

Model F(6, 96) 14.80nnn

R2 (%) 43.3

Parameters Estimate (t,p)

Intercept 33.36 (3.20nn)

Total switches �0.41 (�2.01n)

Sudoku experience 5.25 (7.16nnn)

Gender �5.91(�2.90 nn)

Age �0.00 (�0.00 ns)

Computer skills 1.51 (1.18 ns)

nSignificance level: po0.05.
nnSignificance level: po0.01.
nnnSignificance level: po0.001.
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where b0 is the intercept, X is the number of switches, b1 and
b2 are the coefficients of the linear and quadratic terms, b3,
b4, b5 and b6 are the coefficients of the control variables
(Z1, Z2, Z3 and Z4), respectively, and e is the error term.

Table 3 presents the results of the models, the R2, the
estimated coefficients and the significance of each one.

Both models are significant at po0.001. In the accuracy
model, neither the quadratic term nor the linear term of
total switches are significant. In contrast, in the productivity
model, both the quadratic term and the linear term are
significant (coefficients �0.08, po0.05 and 2.38, po0.05,
respectively). Furthermore, the sign of the coefficient of the
quadratic term in Model 2 is negative indicating an inverted-
U relation. With respect to the control variables, the higher
the level of Sudoku experience the better the performance,
both in terms of accuracy and productivity. The effects of
gender are only significant for accuracy. In the DMT sub-
sample, 56 men have significantly higher accuracy than the 47
women (means 43.71 vs. 38.01). A separate analysis between
gender and accuracy shows that this difference between men
and women is significant (t-value¼2.23; p¼0.028). It should
be noted that the results of the quadratic model without
control variables are identical to those reported here but the
R2 is smaller.

Fig. 2 shows a simplified graph of the quadratic model for
productivity. For visualization and ease of interpretation
purposes, the plotted curve corresponds to the fitted values
obtained from the equation: Y¼49.73–0.08X2

þ2.38X. The
control variables are omitted for simplicity. The inverted-U
pattern is clearly observed in this graph.

Since the coefficients of the single and square terms of
number of switches were not significant in the quadratic
model with accuracy as the dependent variable, we ran a
linear model. The results are shown in Table 4. In this case,
the linear model for accuracy is significant (Model F(6, 96)¼
14.8; po0.001). The coefficient of the linear term of total
switches is negative and significant indicating a decreasing
line. In this model, both Sudoku experience and gender are
Table 3

Quadratic models [N¼103].

Model 1: Accuracy Model 2: Productivity

Model F(6, 96) 13.15nnn 2.32n

R2 (%) 45.1 12.6

Parameters Estimate (t,p) Estimate (t,p)

Intercept 25.57 (2.29n) 49.73 (3.59nnn)

Total switches 1.00 (1.23 ns) 2.38 (2.39n)

Total switches squared �0.05 (�1.79 ns) �0.08 (�2.50n)

Sudoku experience 5.13 (7.04nnn) 1.98 (2.20n)

Gender �6.41 (�3.15nn) �2.54(�1.01 ns)

Age �0.00 (�0.00 ns) �0.20 (� .47 ns)

Computer skills 1.70 (1.34 ns) 0.27 (0.17 ns)

nSignificance level: po0.05.
nnSignificance level: po0.01.
nnnSignificance level: po0.001.
significant explanatory variables. Consistent with the explana-
tions above, higher levels of Sudoku experience are associated
with better accuracy and men in this sample are more
proficient than women. The variance explained by this model
is 43%.
Taken together the results of these analyses indicate that

in terms of accuracy, increased multitasking consistently
produces a decreasing effect. In contrast, the effects for
productivity do follow an inverted-U curve as predicted by
our hypothesis.

4.3. Comparative analysis of performance

An initial comparison of performance metrics (accuracy
and productivity) for participants in both conditions was
performed. The means of accuracy and productivity scores
in the non-multitasking condition though slightly higher
than those in the discretionary condition, are not signifi-
cantly different (see Table 5).
For a more detailed analysis of performance within the

experimental sub-sample, we divided number of switches into
three different categories: Low (number of switches below 10),
Medium (number of switches between 10 and 15) and High
(15 or more switches). The cutoff points (10 and 15) were



Table 5

Comparison of performance control vs. experimental conditions.

Mean S.D. Min Max Comparison results

Accuracy 41.50 12.87 10.75 75 MeanNMT¼41.90; MeanDMT¼41.11; F(1, 203)¼0.19 (ns)

Productivity 60.99 13.22 26.99 93.33 MeanNMT¼60.83; MeanDMT¼61.14; F(1, 203)¼0.03 (ns)

Table 6

Comparison of means.

Accuracy Mean t-Values

DMT-Low DMT-Med 41.62 vs. 47.05 �1.79 ns

DMT-Low DMT-High 41.62 vs. 30.89 3.06nn

DMT-Med DMT-High 47.05 vs. 30.89 3.45nn

NMT DMT-Low 41.90 vs. 41.62 0.15 ns

NMT DMT-Med 41.90 vs. 47.05 �1.66 ns

NMT DMT-High 41.90 vs. 30.89 3.08nn

Productivity Means t-Values

DMT-Low DMT-Med 59.17 vs. 71.20 �4.24nnn

DMT-Low DMT-High 59.17 vs. 56.66 0.57 ns

DMT-Med DMT-High 71.20 vs. 56.66 2.99nn

NMT DMT-Low 60.83 vs. 59.17 0.89 ns

NMT DMT-Med 60.83 vs. 71.20 �3.16nn

NMT DMT-High 60.83 vs. 56.66 1.08 ns

nSignificance level: po0.05.
nnSignificance level: po0.01.
nnnSignificance level: po0.001.
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Fig. 3. Participant applying a non-multitasking strategy.
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determined from the mean and standard deviation of this
variable for the DMT sub-sample. These three categories
represent the extent to which participants engaged in multi-
tasking behavior, whether they were light multitaskers, med-
ium multitaskers, or heavy multitaskers. According to the
predictions of the inverted-U hypotheses, those in the medium
multitasking category should have the highest productivity
when compared to those with low or high levels of multi-
tasking. The results of t-tests confirm this prediction. The most
productive are those with medium levels of multitasking
(71.20), while those at the extremes with low or high multi-
tasking are least productive. Their average productivity levels
are 59.17 and 56.66, respectively. Consistent with the findings
of an inverse relation between multitasking, the results of
additional t-tests confirm that high multitaskers had the lowest
accuracy (30.89) compared with the low multitaskers (41.62)
and medium multitaskers (47.05). These results are presented
in Table 6.

Given the performance differences within the DMT con-
dition, depending on the multitasking category (low, medium
or high) it is possible that the use of average performance is
masking the existence of significant differences. To examine
this possibility, we compared each segment of the discre-
tionary multitasking sample (low, medium and high) with the
non-multitasking condition in each of the two performance
metrics. From these comparisons, only two were significant.
First, high multitaskers had significantly lower accuracy
scores than participants in the NMT (control) condition
(30.89 vs. 41.90; t-value¼3.08, po0.01). Second, medium

multitaskers obtained significantly better productivity scores
than non-multitaskers (71.20 vs. 60.83; t-value¼�3.16,
po0.01). These results are also presented in Table 6.

Consequently, two noteworthy findings emerge from the
comparison of performance. First, high multitaskers per-
formed significantly worse than everybody else (medium
multitaskers, low multitaskers, and non-multitaskers) in
terms of accuracy. Second, medium multitaskers obtained
the highest productivity scores compared to the other
multitaskers and non-multitaskers.

4.4. Analysis of switching patterns

Different multitasking strategies, applied by participants
in the DMT condition, are captured by the number of
switches. Patterns of switches are illustrated with timeline
graphs. In these graphs, the line segments indicate the
approximate amount of time (in seconds) that each task
remained active based on its start and end time.
Fig. 3 shows the timeline graph of a subject who chose
not to multitask and allocated his/her time in a completely
sequential fashion, with only five switches. We note that
sixteen subjects (assigned to the experimental condition)
applied a strictly sequential working strategy. As illu-
strated in the graph, the user first completed the Sudoku
task (SUD), followed by the Word task (WRD), then the
Number Series task (NUMB2), the Visual task (VIS2), the
other Number Series task (NUMB1), and finally the other
Visual task (VIS1).
Fig. 4 shows the timeline of a subject who had 10

switches and multitasked more than the non-multitasking
user. In this case, after about 2 min playing Sudoku,
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Fig. 4. Participant applying an interleaving strategy.

Table 7

Correlations with number of switches in experimental condition [N¼103].

Accuracy Productivity Prior

Sudoku

experience

Multitasking

perception

Perceived

Sudoku

ease

Total

switches

�0.22n �0.03 �0.08 0.31nn 0.21n

nSignificance level: po0.05.
nnSignificance level: po0.01.
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the subject switched to the first visual task (VIS1), completed
it and went on to start and finish the word task (WRD) and
the number series task (NUMB2). The subject then began
the other visual task (VIS2), but before completing it
switched to the first number series task (NUMB1) which
s/he completed. This participant then went back and forth
between playing Sudoku and switching to the Visual task
(VIS2). When time ran out in the visual task, s/he spent the
last minutes working on the Sudoku problem.

Measuring actual multitasking with number of switches
shows the extent to which participants engaged in this
behavior. However, two participants with the same number
of switches may have different switching patterns throughout
their experimental session. To investigate this possibility, we
analyzed the end times of the secondary tasks and compared
them to the end time of Sudoku. A total of 64 people (62%),
compared to only 39 (38%) finished all the secondary tasks
before completing the Sudoku problem and this percentage is
significant (Chi-square¼6.07; p¼0.014). This finding is
consistent with Yeung (2010) who reports that in situations
where people choose to multitask they have a tendency to
finish the easier or shorter tasks first.

The total number of switches was further analyzed with
respect to the other variables collected in this experiment
to gain insights into why some people switch more than
others. Pairwise correlations are presented in Table 7.

These correlations confirm the findings reported earlier.
Accuracy is negatively related to total switches, while
productivity does not have a significant correlation due
to the curvilinear association between these variables. It is
noteworthy that the number of switches is significantly
correlated with multitasking perceptions, thus showing
that subjective perceptions of multitasking activity are
consistent with the objective measure of switches. In
addition, the significant correlation between perceived
Sudoku ease and total switches indicates that those who
perceived Sudoku to be easier tended to switch more than
those who found this task to be difficult.

5. Discussion

In this paper, we propose a theoretical model based on
memory-for-goals theory and the Yerkes–Dodson law to
explain the relation between computer-based multitasking
behavior and performance. Based on cognitive theories of
goal-directed attention and different multitasking strategies,
the model predicts an inverted-U relationship between
multitasking and performance. This model provides the
foundation to systematically compare the effects of alter-
native multitasking strategies. To test the model, we con-
ducted a controlled experiment with a custom-developed
application that featured several problem-solving tasks of
different durations. Participants were randomly assigned to
one of two conditions: non-multitasking condition (control
group) or discretionary multitasking condition. Those in the
control condition were presented with the tasks one at a
time in sequence. Subjects in the discretionary multitasking
condition were allowed to switch tasks at will. Consistent
with our treatment, the discretionary multitasking condition
reported significantly higher perceptions of multitasking
than participants in the control condition, which provides
evidence of the integrity of our experimental conditions.
To test the predictions of the Yerkes–Dodson law, we used

the number of switches as an indicator of multitasking. Given
the nature of our experimental setting, the number of switches
is an appropriate metric to determine the extent to which each
participant engaged in multitasking behavior. This metric is
also consistent with the premise of memory-for-goals theory.
Switches are indicative of self-interruptions and goal shifts.
Regardless of the amount of effort put into the new task, by
switching the subject is diverting attention from the previous
task goal and focusing on a new goal. Thus, the higher the
amount of switches, the higher the number of times a user
shifts goals.
In our analysis of the discretionary multitasking sub-

sample, we found that a quadratic model explains perfor-
mance efficiency (productivity). This finding is consistent
with our theoretical development which proposes that
increased multitasking levels are beneficial to a point after
which there are negative effects. The inverted-U curve can
also be explained in terms of the costs associated with
multitasking. At lower levels of multitasking, the cognitive
switching costs associated with swapping problem state
information in memory are offset by the efficiency gains
achieved from increased arousal. This enhanced state of
alertness mobilizes additional cognitive resources that
result in better productivity. However, at high levels of
multitasking, any potential performance improvement is
lost to between-task interference.
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In contrast to the inverted-U curve found for perfor-
mance efficiency, a linear model explains performance
effectiveness (accuracy). It is likely that the nature of the
tasks chosen for this experiment along with the strict time
controls account for the linear degradation of performance
for those that discretionarily engaged in multitasking
behavior. Based on the predictions of the theoretical
development, it appears that accuracy gains are not
experienced with increased levels of multitasking at any
point. On the contrary, accuracy steadily decreases as
multitasking behavior increases. This finding has to be
carefully examined in other contexts with different tasks or
more lenient time controls.

On average, performance metrics (accuracy and produc-
tivity) did not show any statistically significant differences
between participants in the control and the experimental
condition. To investigate whether performance averages
were masking important differences, the discretionary
multitasking sub-sample was segmented in three categories
(low, medium and high), according to the number of
switches. Comparisons between each sub-group and the
control condition showed two significant differences. On
the one hand, high multitaskers had the lowest accuracy
scores than other multitaskers and non-multitaskers.
On the other hand, medium multitaskers had the best
productivity scores than anybody else (including other
multitaskers and non-multitaskers).

The most intriguing question is why some participants
switch more than others. To find possible explanations, we
ran pair-wise correlations with number of switches. The
correlation with prior Sudoku experience is not significant
(r¼�0.08, p¼0.40 ns). Although prior experience with
Sudoku has a significant influence on performance effec-
tiveness for subjects who worked in the discretionary
multitasking condition (i.e. the coefficient for Sudoku
experience is significant in all the models), there is no
significant pair-wise correlation between prior level of
experience and number of switches. In contrast, there is
a significant correlation between number of switches and
perceived Sudoku ease. This finding suggests that those
who found the main task easy did switch more than those
who found it difficult. In the context of our theoretical
development, it appears that task difficulty can act as a
deterrent to switching, while on the other hand the easier
the task, the higher the likelihood of switching.

Overall, the results of this study suggest that the relation
between multitasking and performance depends upon
the metric used for assessing performance. If performance
is measured with accuracy of results (i.e. as performance
effectiveness), the relation approximates a downward
slopping curve, in which increased levels of multitasking
lead to a significant loss in accuracy. In contrast,
when performance is measured with productivity (i.e. as
performance efficiency), different multitasking levels are
associated with an inverted-U curve. Those with medium
levels of multitasking activity had better productivity than
those in the lower or higher levels.
5.1. Limitations

Several limitations should be acknowledged in the
interpretation of our results. The first limitation stems
from our choice of research method. By conducting an
experiment we attempted to maximize precision at the
expense of realism and generalizability (Jung et al., 2010).
As Dennis and Valacich (2001, p. 5) indicate, ‘‘no one
method is better or worse than any other,’’ some methods
are better at some aspects and worse at others. The use of a
laboratory experiment allowed us to precisely control the
variables of interest (tasks and times) and test our hypothesis
in the absence of extraneous influences and confounding
factors.
Notwithstanding the freedom to switch tasks in the

discretionary multitasking condition, the empirical findings
we report may have been influenced by the parameters
imposed by the custom-developed application. The nature
of the tasks (problem solving under time constraints) could
have affected the extent to which participants exhibited
multitasking behavior. In particular, the knowledge that
total time on a tab was limited may have affected how
participants chose to allocate their time.
It should also be noted that participants for our study

were drawn from the student population at a major urban
college in the Northeast of the U.S. Furthermore, as is
typical in most laboratory experiments, participants did
not have a real stake in the outcome. Although they were
compensated for their participation, the payment was not
tied to their performance. Nevertheless, the quantitative
data as well as results of informal interviews suggest that
participants took the tasks seriously, particularly because
they found the multitasking environment engaging, chal-
lenging and fun.
Overall, the limitations stemming from the choice of

research methods (laboratory experiment), the design of the
multitasking environment (problem solving tasks with time
controls) and the nature of the subjects who participated
in this research (college students), suggest caution when
generalizing these results to other populations and settings.
The inability to make generalizations was traded off for
the precision and control afforded by laboratory research.
Although our experimental environment may be deemed as
artificial, it gave us the opportunity to control task and times,
and measure performance with two different metrics (accu-
racy and productivity) and under different multitasking
scenarios. As a result of these methodological choices, our
research has provided evidence for the complex relation
between multitasking behavior and performance. Accord-
ing to our results, when multitasking increases there is an
inverted-U curve for productivity but a linearly decreasing
function for accuracy.

5.2. Implications for theory, research and practice

At the theoretical level, this study explains why the
Yerkes–Dodson law occurs in multitasking situations using
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memory-for-goals theory. Our model posits that performance
increases at lower levels of multitasking when increased
arousal from shifting goals is beneficial to keep the users alert
and engaged with their tasks. However, performance decreases
after a certain point when constant goal displacement has a
negative effect on performance. With this theoretical contribu-
tion, we have shown the limits to multitasking from the
perspective of memory-for-goals theory. Goal shifting is
evidenced in task switching, which is related to arousal. Given
the link between arousal and switching, a logical expansion to
this framework would consist of theorizing about the drivers
for task switches with situational and individual antecedents of
multitasking, such as personality or cognitive styles, which
would offer a more complete view of this type of behavior.

From a research perspective, our study provides the
foundation to examine the relation between multitasking
behavior and user performance. Exploring the boundaries of
this relation and the extent to which it can be replicated with
other tasks and in other settings offers a fertile ground for
future research. One of the most intriguing questions is why
some participants multitask more than others. Further
research should investigate whether individual preferences
(such as personality traits or multitasking propensity), or
situational conditions (such as task complexity, interruptions
or notifications) account for differential levels of multitasking
activity. According to our findings, the degree of difficulty of
the main task influences multitasking behavior.

This study can be extended in multiple directions. One
possibility is to add another condition (mandatory interrup-
tions) and compare the results on performance using a larger
sample. Another option is to include additional tasks with
different levels of difficulty and different priorities. Finally,
another potentially fruitful extension consists of allowing
participants to initiate their own tasks (such as checking email,
browsing the web, etc.). Although the addition of participant-
initiated tasks would make the environment more representa-
tive, overall performance would be more difficult to measure.

The practical implications of our results are noteworthy.
While medium levels of multitasking tend to increase
individual productivity, high levels of multitasking are
detrimental to accuracy. Accordingly, information workers
should be mindful of the implications of multitasking in
their own performance and consider reverting to a strictly
sequential approach, instead of increasing their own multi-
tasking levels to a point where all productivity gains are
lost and performance suffers. This insight can help design
novel features to support and control multitasking beha-
vior in computer-based environments.

6. Conclusion

Multitasking is a contemporary phenomenon resulting
from a fast-paced, technologically-driven world. At home,
at school or at work, people no longer focus their attention
on one task at a time, but tend to juggle multiple tasks
simultaneously. Although the upside of multitasking
could be the illusion of productivity, the downside is their
potential negative effects on performance. To investigate
this phenomenon, we propose a theoretical model predict-
ing an inverted-U-relation between multitasking and per-
formance, and test it with a laboratory experiment using a
custom-developed application. Our results indicate that
some multitasking actually improves productivity, but too
much multitasking has a negative effect. When accuracy is
used to measure performance, the results are not encoura-
ging. More multitasking has a deleterious effect on
performance effectiveness. Metaphorically speaking, jug-
gling multiple tasks is much more difficult while balancing
on a high wire, where performance mishaps can have
serious consequences.
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Bäumler, G., 1994. On the validity of the Yerkes–Dodson law. Studia

Psychologica 36, 205–209.

Benbunan-Fich, R., Adler, R.F., Mavlanova, T., 2011. Measuring multi-

tasking behavior with activity-based metrics. ACM Transactions on

Computer–Human Interaction 18 (2), 1–22.

Benbunan-Fich, R., Truman, G.E., 2009. Multitasking with laptops

during meetings. Communications of the ACM 52 (2), 139–141.

Bluedorn, A.C., Kaufman, C.F., Lane, P.M., 1992. How many things do

you like to do at once? An introduction to monochronic and

polychronic time. Academy of Management Executive 6 (4), 17–26.

Borst, J.P., Taatgen, N.A., Van Rijn, H., 2010. The problem state:

a cognitive bottleneck in multitasking. Journal of Experimental

Psychology: Learning, Memory, and Cognition 36 (2), 363–382.

Czerwinski, M., Horvitz, E., Wilhite, S., 2004. A diary study of task

switching and interruptions. In: Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pp. 175–182.

Dennis, A.R., Valacich, J.S., 2001. Conducting research in information

systems. Communication of the Association for Information Systems

7 (5), 1–41.

Gillie, T., Broadbent, D., 1989. What makes interruptions disruptive?

A study of length, similarity, and complexity. Psychological Research

50 (4), 243–250.

Gonzalez, V.M., Mark, G., 2004. ‘Constant, constant, multi-tasking crazi-

ness’: managing multiple working spheres. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pp. 113–120.

Hembrooke, H., Gay, G., 2003. The laptop and the lecture: the effects of

multitasking in learning environments. Journal of Computing in

Higher Education 15 (1), 46–64.

Jung, J.H., Schneider, C., Valacich, A.J., 2010. Enhancing the motiva-

tional affordance of information systems: the effects of real-time

performance feedback and goal setting in group collaboration envir-

onments. Management Science 56 (4), 724–742.

Kahneman, D., 1973. Attention and Effort. Prentice-Hall, Englewood

Cliffs, NJ.

König, C.J., Oberacher, L., 2010. Personal and situational determinants of

multitasking at work. Journal of Personnel Psychology 9 (2), 99–103.

Madjar, N., Shalley, C.E., 2008. Multiple tasks’ and multiple goals’ effect

on creativity: forced incubation or just a distraction? Journal of

Management 34 (4), 786–805.

http://ssrn.com/paper=942310


R.F. Adler, R. Benbunan-Fich / Int. J. Human-Computer Studies 70 (2012) 156–168168
Mark, G., Gonzalez, V.M., Harris, J., 2005. No task left behind?: Examining

the nature of fragmented work. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pp. 321–330.

McCrickard, D.S., Catrambone, R., Chewar, C.M., Stasko, J.T., 2003a.

Establishing tradeoffs that leverage attention for utility: empirically

evaluating information display in notification systems. International

Journal of Human–Computer Studies 58 (5), 547–582.

McCrickard, D.S., Czerwinski, M., Bartram, L., 2003b. Introduction:

design and evaluation of notification user interfaces. International

Journal of Human–Computer Studies 58 (5), 509–514.

McFarlane, D., 2002. Comparison of four primary methods for coordi-

nating the interruption of people in human–computer interaction.

Human–Computer Interaction 17 (1), 63–139.

Meyer, D.E., Kieras, D.E., 1997. A computational theory of executive

cognitive processes and multiple-task performance: part I, basic

mechanisms. Psychological Review 104 (1), 3–65.

Miller, J.G., 1978. Living Systems. McGraw-Hill, New York.

Monsell, S., 2003. Task switching. Trends in Cognitive Sciences 7 (3),

134–140.

Muse, L.A., Harris, S.G., Field, H.S., 2003. Has the inverted-U theory of

stress and job performance had a fair test? Human Performance 16 (4),

349–364.

Navon, D., Gopher, D., 1979. On the economy of the human-processing

system. Psychological Review 86 (3), 214–255.

Norman, D.A., Bobrow, D.G., 1975. On data-limited and resource-

limited processes. Cognitive Psychology 7 (1), 44–64.

Palladino, L.J., 2007. Find Your Focus Zone: An Effective New Plan to

Defeat Distraction and Overload. Free Press, New York.

Payne, S.J., Duggan, G.B., Neth, H., 2007. Discretionary task interleav-

ing: heuristics for time allocation in cognitive foraging. Journal of

Experimental Psychology: General 136 (3), 370–388.
Rubinstein, J.S., Meyer, D.E., Evans, J.E., 2001. Executive control

of cognitive processes in task switching. Journal of Experimental

Psychology: Human Perception and Performance 27 (4), 763–797.

Salvucci, D.D., Taatgen, N.A., 2011. The Multitasking Mind. Oxford

University Press, New York.

Salvucci, D.D., Taatgen, N.A., Borst, J.P., 2009. Toward a unified theory

of the multitasking continuum: from concurrent performance to task

switching, interruption, and resumption. In: Proceedings of the

CHI’09 Human Factors in Computing Systems, pp. 1819–1828.

Speier, C., Vessey, I., Valacich, J.S., 2003. The effects of interruptions,

task complexity, and information presentation on computer-supported

decision-making performance. Decision Sciences 34 (4), 771–797.

Staal, M.A., 2004. Stress, cognition, and human performance: a literature

review and conceptual framework. NASA Technical Memorandum

2004-212824.

Teigen, K.H., 1994. Yerkes–Dodson: a law for all seasons. Theory and

Psychology 4 (4), 525–547.

Wasson, C., 2004. Multitasking during virtual meetings. Human Resource

Planning 27 (4), 47–61.

Wiener, E.L., Curry, R.E., Faustina, M.L., 1984. Vigilance and task load:

in search of the inverted U. Human Factors: The Journal of the

Human Factors and Ergonomics Society 26 (2), 215–222.

Yerkes, R.M., Dodson, J.D., 1908. The relation of strength of stimulus to

rapidity of habit-formation. Journal of Comparative Neurology and

Psychology 18 (5), 459–482.

Yeung, N., 2010. Bottom-up influences on voluntary task switching: the

elusive homunculus escapes. Journal of Experimental Psychology:

Learning, Memory, and Cognition 36 (2), 348–362.

Zhang, Y., Goonetilleke, R.S., Plocher, T., Liang, S.-F.M., 2005. Time-

related behaviour in multitasking situations. International Journal of

Human–Computer Studies 62 (4), 425–455.


	Juggling on a high wire: Multitasking effects on performance
	Introduction
	Theoretical background
	Memory for goals
	Yerkes-Dodson law
	Hypothesis development

	Research design
	Experimental procedures
	Measures of variables

	Data analysis and results
	Manipulation check
	Analysis of discretionary multitasking sub-sample
	Comparative analysis of performance
	Analysis of switching patterns

	Discussion
	Limitations
	Implications for theory, research and practice

	Conclusion
	References




