
An Industrial Case Study of Program Artifacts Viewed
During Maintenance Tasks

Lijie Zou and Michael W. Godfrey
Software Architecture Group (SWAG)

School of Computer Science, University of Waterloo
{lzou, migod}@uwaterloo.ca

Abstract

Research on maintenance task structure modeling
has so far examined only how often program artifacts
are modified, and what information can be deduced from
modification records. However, developers often access
artifacts that they do not change, and this information
is not modeled or recorded by current research systems.
In this paper, we describe an exploratory industrial case
study that we have conducted to investigate this issue;
we found that within a given maintenance task, the
software artifacts that are viewed but not changed out-
number the changed artifacts over 70% of the time. We
further found that including information about which
artifacts were changed and which were only viewed was
key to a mature understanding of the tasks that the
developers were performing. Finally, we discuss how
creating a repository that captures both the viewed-only
and modified artifact accesses can yield further insights
into the development process, such as how developers
handle interruptions and task switching in their work-
flow.

1. Introduction

Software maintenance is driven by tasks: clearly de-
fined, goal-directed activities aimed at improving the
software system in some way. When a developer is
asked to fix a bug or add a new feature, (s)he will typi-
cally analyze code, reason about the design, and finally
solve the problem. During this process, it is also typi-
cal that some program artifacts — such as source code
files, documentation, or configuration files — will be
changed to implement the solution, while others will
be viewed for reasons such as program comprehension
but left unchanged.

When a task is completed, changes to artifacts are

usually recorded in version control systems and added
to a repository. Recently, the research community has
recognized that these software repositories contain sig-
nificant latent knowledge about the development pro-
cess, and has sought ways to “mine” them for insights
into logical coupling [2], identifying expertise [6] and
recommending task relevant information [11, 10, 7].

However, tracking which artifacts have changed and
how captures only some of this latent task knowledge.
Some knowledge — such as how to trace the symptoms
of a particular bug or what artifact should be studied
to best understand a given design decision — involves
artifacts that have been viewed but not changed. In
current research approaches, the uses of these viewed-
only artifacts are not captured and modeled. Thus
important task knowledge relating to them is lost.

We believe that by creating a new task struc-
ture model that includes both modified artifacts and
viewed-only artifacts, richer knowledge about a task
can be captured. If a historical repository of this aug-
mented structure can be built, it will serve as a valu-
able source of information for the developer and man-
ager. Improved understanding of the development pro-
cess can then lead to the design of better processes and
more natural supporting tools.

In this paper, we use an industrial case study to
evaluate whether it is meaningful and important to
capture the use of viewed-only artifacts in modeling
maintenance tasks. Our initial results suggest that it
is, and that the number of viewed-only program arti-
facts is often larger than the number of changed arti-
facts. Based on informal evaluation, our approach of
building a repository that records both modified and
viewed-only artifacts using instrumentation appears to
be feasible. We have further found that the use of
such a repository can yield new and unexpected in-
sights into the software development process, such as
the problem of frequent interruptions that developers
may encounter while engaged in a maintenance task.

1

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

The remainder of the paper is organized as follows:
first, we present our research questions in Section 2.
Next, we describe the design of the case study in Sec-
tion 3. In Section 4, we discuss the results obtained
from this study, including the size of viewed-only pro-
gram artifacts relative to modified program artifacts,
and other other observations. In Section 5, we discuss
related work. Finally, in Section 6, we summarize this
study and describe future work.

2. Research questions

Our long term research goal is to build a task knowl-
edge repository and use it to better understand and
ultimately improve the software development process.
We propose to include both viewed-only artifacts and
modified artifacts as components of the task structure
model. However, before that can happen, we must
first study whether these viewed-only artifacts are suf-
ficiently important to be included in the model. Specif-
ically, we seek to answer two questions:

Q1: Do viewed-only program artifacts exist?

Q2: What is the number of viewed-only program ar-
tifacts relative to the number of modified program
artifacts?

We are interested in these questions because if the
number of viewed-only artifacts is insignificant, then
obviously there is no need to continue with this line of
research.

We operationalize the two research questions as fol-
lows:

We use #V and #M to denote the number of
viewed-only program artifacts and the number of mod-
ified artifacts in a task respectively. To answer Q1, we
check whether there exists a task that has #V > 0. To
answer Q2, we compare #V with #M in each task. We
consider it reasonable to say that the number of viewed-
only artifacts is big enough relative to the number of
modified artifacts if following condition is satisfied:

{
#V/#M ≥ 50%, if #M > 0,

#V > #M, if #M = 0.
(1)

In additional to answering the two questions about
the existence and size of viewed-only artifacts, we also
hope to understand their relevance to a task. Profes-
sional programmers are usually content to understand
just enough to finish their maintenance tasks [9]. This
implies that most viewed-only program artifacts should
be relevant to the task at hand. Unfortunately, we lack
detailed knowledge about how they are relevant. Are

they mainly related to impact analysis, for example,
or are they viewed to better understand a design deci-
sion? Answers to questions such as these are important
to characterize task knowledge structure.

We have also other research questions that we hope
to address in this study, including:

• What is the best way to build a repository that
models information about both viewed-only and
modified artifacts? We currently use a plug-in tool
that captures events from Eclipse IDE. This tool
requires some manual input from developer. Is
this tool too intrusive for developers? What im-
provements can be made?

• What we can learn about software development
activity from such a repository? Can we develop
some sample applications?

3. Case study design

Our case study took place in a department, which
we will label R, of a medium-size software company
in Shanghai, China. We chose this company and de-
partment because it is available to us and has typi-
cal process of software development. For the study,
we recruited three professional programmers from two
project teams who use Eclipse as their major develop-
ment environment.

We developed and installed a plug-in tool for their
Eclipse environment that captures and records when
program artifacts are being viewed or modified, and
the developers used this as they were performing typ-
ical (and real) software development tasks. The study
lasted for one month.

As stated above, our main goal of this case study is
to evaluate whether it is important to include viewed-
only program artifacts as part of the task knowledge.
This is decomposed into two research questions as
shown in Section 2. In additional to that, we also hoped
to study the relevance of viewed-only artifacts to a task,
evaluate the feasibility of building the repository, and
develop sample applications for the repository.

For answering the two research questions about the
existence and size of viewed-only program artifacts, the
unit of analysis is a single task. For the other topics,
the unit of analysis varies. Data is mainly collected
using the Eclipse plug-in tool. Background information
and data clarification are obtained using questionnaire,
email, and informal meetings.

Data collected from the tool is loaded into a RDBMS
and is further analyzed by querying the database.

2

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

3.1. Research setting

The software company involved in this study has
about 300 employees. Its main product lines include fi-
nance, ERP (Enterprise Resource Planning), and busi-
ness intelligence systems. The ERP department has
passed CMM level 3, but the R department that was
involved in our study has not been so certified. Ac-
cording to the R department manager, its software de-
velopment practices have been strongly influenced by
ERP department, and informally considers that they
are similar in quality to them.

Three programmers — P1, P2 and P3 — from two
project teams — H and B — participated in this study.

The H project is an internal application platform for
several other major products in the company, includ-
ing logistics, ERP, and finance. It has 577 classes and
57 KLOC, and is currently being maintained by six
programmers. The B project is a business intelligence
platform that provides advanced analysis of business
data from other systems. One of its components is part
of an open source project and the project team is con-
tributing their enhancements back to the open source
community. The B software system has 838 classes and
93 KLOC, if one includes the open source project, or
202 classes and 20 KLOC if it is excluded. Currently
three programmers are involved in its development and
the system is expected to be deployed within a month
at time of writing.

3.2. Data collection

At the recruitment meeting, the prospective partic-
ipants first filled out a questionnaire about their back-
ground and current work habits.1 We found that all
three programmers had joined the team shortly after
the project was initiated. All of them are considered
to be experts in their teams, have more than three
years experience in programming in Java, and have
used Eclipse for two years. All of them currently use
Eclipse as their main integrated development environ-
ment (IDE). Their background seem somewhat similar.
But this is not chosen intentionally. (Table 1 summa-
rizes the details.)

A monitoring plug-in that we developed was then
installed in the Eclipse environment they were using
(the plug-in is described further in 3.2.1). The plug-in
captures which program artifacts, such as Java classes
or methods, were viewed or modified within Eclipse,

1Prior to any data collection, all of the participants signed
informed consent forms, as suggested by Office of Research Ethics
at the University of Waterloo. All the raw data has been kept
confidential and anonymity has been maintained.

Table 1. Background of participants

Prog Proj Years Years Years Avg hours/day
in proj in Java in Eclipse using Eclipse

P1 H 1.5 4 2 8
P2 B 0.5 4 2 5
P3 H 1.5 3 2 5

and records this information into text files on the local
machine. During the recruitment meeting, we gave a
detailed tutorial on the use of the tool, and ensured
that there were no unanswered questions.

Monitoring lasted for one month. Data files were
emailed to the researchers twice every week; this was
done so that the developers could be reasonably certain
that their manager was not tracking the data, which
was a condition of the study.

More detailed information about how viewed-only
program artifacts might be relevant to a task was col-
lected through email. This was done one month af-
ter the monitoring was completed. A small number
of tasks were picked and given to the programmer who
performed them, with detailed information about what
files were viewed only and what files were changed.
Programmers were asked to recall why those viewed-
only files were viewed. Were they viewed by accident,
or due to their relevance to a task? In order to get
enough information out of the small number of tasks, a
relatively large number of viewed-only files were picked.

Some further background information and clarifica-
tion of data was collected through email, and an in-
formal meeting with the manager and the participants
was held after the monitoring was completed to review
how the study had gone.

3.2.1 The Eclipse plug-in tool

The Eclipse plug-in tool is the main data collection
method used in this study. The tool captures events in
Eclipse environment [1] and translate them into events
that are meaningful for our study. For example, se-
lection and editing events within editors are translated
into viewing or modifying a program artifact. Cur-
rently, the tool works only within JDT, a Java devel-
opment environment in Eclipse [4].

We consider three kinds of program artifacts: meth-
ods, classes, and files (compilation units). An event in
a code segment is considered to be “belong” to the
smallest program artifact surrounding the code: all
the events within a method are considered as events
of that method; all the events outside of any method
but within a class are considered as events of that class;
and all the events outside of any class but within a file
are considered as events of that file. We choose the

3

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

smallest artifact to be the method since its is the basic
functional unit of a program.

The plug-in tool has a view associated with it, as
shown in Figure 1. In this view, a programmer can
start or stop recording, start or stop a tasklet (a work-
ing unit of a task, this will be explained later), or view
the events being captured in real time. The real time
event viewing feature can be turned off to reduce per-
formance overhead.

Figure 1. The Eclipse plug-in tool

Two important concepts in this study are the task
and tasklet. A task is some work to be done with a
defined goal, such as fixing a bug. The execution of
two or more tasks may be interleaved. For example, a
programmer may work on task A from 9:00 am to 10:00
am, then switch to high priority task B from 10:00 am
until 11:00 am, and then go back to task A again from
11:00 am until 12:00 noon. In this example, switching
to task B back and forth divides task A into two work-
ing units, 9:00 to 10:00 and 11:00 to 12:00. We define
these continuous working units of a task as tasklets.
In an IDE such as Eclipse, often a lot of information
needs to be presented to the developer and many arti-
facts may be “open” at the same time. Task switching,
therefore, causes extra work to save and recover task
context.

Using our plug-in tool, a programmer can manually
create a tasklet and specify the task that it belongs
to. Tasklets with the same task name are regarded as
different working units of the same task.

3.3. Data analysis

Data collected by the monitoring tool was loaded
into a RDBMS, which made it convenient to query the
data set from different angles. One programmer used
two Eclipse instances at the same time for two days.
Since our plug-in tool had errors capturing that (we
had not foreseen this possibility), we did not include
that chunk of data in our anaylsis.

Data analysis was performed both at the
“method+” level and file level. In method+ level
analysis, artifacts are of the granularity captured in
the raw data. Since the raw granularity can be a
method, class, or file, we denote it as the “method+”

level. With file level analysis, data is lifted to the file
level: a data point of a method or a class within a file
is counted as a data point of this file. We choose a
two level analysis because methods and files are two
granularities that are commonly used in research; it is
our hope that our results will be easy to compare with
those of others.

3.4. Threats to validity

We now discuss the construct, internal, and external
validity of our study.

• Construct validity

Our study depends on the definition of viewing a
program artifact. In our study, viewing a program
artifact is determined by selection events in the
Eclipse editor. This heuristic is not always correct
for methods. For example, programmers may se-
lect somewhere within method A but then scroll
the screen and look at method B instead without
selecting on it. We plan to improve it in the fu-
ture by considering the code visible on the screen.
However, we note that this heuristic is always cor-
rect for files, since JDE only allows one file to be
visible in the editor at one time.

• Internal validity

Our work requires programmers to manually spec-
ify what tasks they are performing. If a program-
mer forgets to do so, then the tasks being captured
will not match reality, thus adversely affecting in-
ternal validity. However, according to the partic-
ipants, almost all of the time they were able to
specify tasks correctly, so our study should be in-
ternally valid.

• External validity

As with other case studies, our work may not be
generalized to other industrial settings due to its
particular context. Tasks in the two projects may
have different characteristics than other projects.
How these programmers understand and solve
tasks may also be different from others. Repli-
cation of this study in other settings will be our
future work.

4. Results

We will present our results in several parts. First we
give an overview of the tasks performed in the study

4

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

Table 2. Overview of tasks

Prog Days #Tasks #Tasklets Hours using Eclipse
P1 25 20 38 165
P2 15 17 25 57
P3 7 6 11 98

Table 3. Type of tasks

Prog #Tasks Bug New Understanding Others
Fix Feature

P1 20 17 0 2 1
P2 17 7 7 3 0
P3 6 1 5 0 0

period. Then we show the results related to answer-
ing Q1 and Q2. In the following subsections, we dis-
cuss the relevance of viewed-only artifacts, the feasibil-
ity of building such a repository, and we present some
insights about software development that came from
studying the repository and case study results.

4.1. Overview

Table 2 gives an overview of the programmers’ de-
velopment activities during the study period.

P1 worked in Eclipse almost every weekday of the
study period. P2 worked in Eclipse for half of the days;
on those other days, P2 worked outside of the Eclipse
environment, which is outside the scope of our study.
P3 worked on the project for only the first eight days
of the study; he switched to work on another project
thereafter. A total of 43 tasks were performed during
the study period. It is interesting to see that, on av-
erage, roughly one task was defined each programmer
day.

Programmers manually specify the types of tasks
they were performing. Table 3 summarizes this infor-
mation.

The three programmers differed in the type of the
tasks they most commonly performed. This difference
in assignments was mainly due to the fact that they
were responsible for different modules of the systems.

A task can be performed in separate working units
(tasklets). Figure 2 shows the number of tasklets for
each task in our study, sorted by programmer and
starting time of each task.

We can see from the figure that most of the time, a
task is completed within a single working unit. How-
ever, there also exist several occasions where a task was
divided into several tasklets. About 20% tasks in this
study has more than one tasklet. Separating one task
into multiple tasklets may cause task switching. We
will present more result of this topic in Section 4.6.1.

Figure 2. # Tasklets of each task

4.2. Q1: Do viewed-only program artifacts
exist?

As we have explained in Section 2, we check whether
viewed-only program artifacts exist by counting #V ,
the number of viewed-only program artifacts in each
task.

First we perform method+ level analysis. Fig-
ure 3 shows the number of viewed-only artifacts and
the number of modified artifacts of each task at the
method+ level, sorted by programmer and the start-
ing time of each task (the same order as Figure 2).
We display the number of changed program artifacts
here to save space, since we will need both values in
answering Q2. This is also true for Figure 4.

Figure 3. # Modified vs. # viewed-only at the
method+ level

We can see from this figure that viewed-only pro-
gram artifacts exist in almost all tasks (95%). Further-
more, some tasks consist only of viewed-only artifacts.
For example, in one task that lasted for 40 minutes,
all the 21 methods within four files were viewed only.
These tasks were mainly for understanding purpose.

The 6th task, which involved fixing a complicated
bug, had the largest number of viewed-only artifacts;
it was divided into twelve tasklets, as shown in Fig-
ure 2, with a total of 350 viewed-only artifacts and 286
changed artifacts at the method+ level. Some tasks
had many more viewed-only artifacts than modified ar-

5

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

tifacts. For example, the 9th task had 39 viewed-only
artifacts versus 8 modified artifacts, and the 13th had
114 viewed-only versus 24 modified.

We now perform analysis at the file level. Figure 4
shows the number of viewed-only files and the number
of modified files for each task, also with the same order
as Figure 2.

Figure 4. # Modified vs. # viewed-only at the
file level

Similar to method+ level, almost all tasks (93%)
included files that were viewed only. Also some tasks
had many more viewed-only artifacts than modified,
such as the 4th and 13th tasks.

Both results from the method+ level and the file
level analysis have shown that viewed-only program ar-
tifacts do exist and they occur very often (more than
90% tasks in our study).

4.3. Q2: What is the number of viewed-only
program artifacts relative to the num-
ber of modified program artifacts?

As we have explained before, we answer this ques-
tion by comparing #V , the number of viewed-only pro-
gram artifacts, with #M , the number of modified ar-
tifacts in each task.

The data from our study is shown in Figure 3 and
Figure 4. We calculated #V and #M for each task
both at the method+ level and the file level.

At the method+ level (Figure 3), the number of
viewed-only program artifacts (#V) is often larger
than the number of modified program artifacts (#M).
In fact in our study, 79% (34/43) of the tasks have
#V ≥ #M . The average number of modified artifacts
in a task is 27.5, and the median is 7. The average
number of viewed-only artifacts is 35.6, and the me-
dian is 17. A total of 88% (38/43) of the tasks satisfy
the condition (1), therefore their numbers of viewed-
only program artifacts are considered to be big enough
relative to their numbers of modified program artifacts.

At the file level (Figure 4), the number of viewed-
only program artifacts is also often larger than the
number of modified program artifacts. 74% (32/43)
of the tasks have #V ≥ #M . The average number of
modified files in a task is 5.7, and the median is 2. The
average number of viewed-only files in a task is 8.0,
and the median is 4. A total of 81% tasks satisfy the
condition (1).

So both the method+ level and the file level analy-
sis show that in more than 70% tasks in this study, the
number of viewed-only artifacts was larger than the
number of modified artifacts. More than 80% tasks
have the number of viewed-only program artifacts big
enough relative to the number of modified program ar-
tifacts, as defined by the condition (1).

4.4. Relevance of viewed-only artifacts

We need information about how viewed-only arti-
facts can be related to a task in order to better under-
stand the task knowledge structure.

Using the method we described in Section 3.2, we
picked some medium size tasks that have a relatively
large number of viewed-only files for each programmer,
and asked them to comment on them. We selected the
4th, 13th and 18th tasks for P1, the 26th and 35th tasks
for P2 and the 41st task for P3, from the sequence of
tasks as shown in Figure 4.

Because we performed the review a month after the
monitoring had been completed, we did not collect as
much useful information as we had hoped for. P1 and
P2 said that they could not recall the particular details
any longer, but they still were able to describe some
general situations that they considered to be factual.
Only P3 described the details of the task we selected
after he reviewed the code. Although this is not a
good result for our data collection, it does serve to
show how fast programmers can forget about what they
did, and therefore how important it is capture this task
knowledge while it is still fresh.

All the programmers mentioned that it is common to
view but not change program artifacts. Sample scenar-
ios include debugging, impact analysis, finding sample
code to refer to, searching for reuse candidates, and
general program comprehension.

They often consider whether a change to be made is
compatible with the existing design and which solution
is the best among all the possibilities. P3 described an
example. There is an exception mechanism that in-
volves a set of classes. When a new exception needs
to be thrown, he needs to decide whether it can be de-
fined as an instance of an existing exception class, or of
a new subclass of an existing exception, or something

6

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

else. He said for the same reason of deciding how to
throw an exception that best matches the existing ex-
ception design, several related classes are often viewed
together.

There are also occasions when the artifacts that are
viewed are not directly related to the task at hand.
For example, it may suddenly occur to a programmer
that some recently written code is incorrect. In such a
case, he may examine that code while ostensibly within
current task (i.e., without defining a new task, as he
should). The programmers made several suggestions
to improve this situation, such as automatic detection
of task switching according to files being visited.

4.5. Building the repository

In our current approach, we use a plug-in tool that
monitors activities within the Eclipse environment to
collect raw data for the repository. The tool requires
some manual input from programmers, and therefore
its use may affect the normal work flow. To evalu-
ate whether this is a problem to the programmers, we
collected feedback from them through discussions and
interviews.

Before the monitoring started, the programmers
were worried about whether the tool would affect per-
formance of Eclipse, considering that it captures many
events within Eclipse. After using the tool for a week,
they told us that the performance was not affected at
all. They also mentioned that manually defining a task
was not a big problem, since they usually perform a
small number of tasks everyday.

They made several suggestions concerning what can
be improved in our tool. One is creating an easier
way to trigger the tool. Currently, all the functionality
of our tool is accessed within a particular view. This
view shares display space with other views in Eclipse,
thus is invisible until programmers explicitly switches
to it. The programmers suggested to use a shortcut,
or a toolbar button instead to activate the view or pop
up a new window. Another suggestion is to support
automatic detection of task switching. One program-
mer said that in case of emergent task, he might forgot
to specify the new task. This may be avoided if our
tool can detect project switching without requiring the
programmer to intervene.

4.6. Using the repository

After we built the repository, we analyzed its data
from different perspectives. We observed several inter-
esting phenomena related to software development.

4.6.1 Task switching

Task switching often occurs when programmers have
other higher priority or easier tasks to complete. It
may also happen when the current task is too complex,
or does not have enough resources, thus needs to be
delayed. In an IDE, it is common for developers to
wish to have a lot of information within easy viewing.
Task switching causes extra work to save and recover
task context.

As a result of task switching, a task will be divided
into separate working units (tasklets). Task switching
will be seen as tasklets interleaved with each other. In
our study, roughly 20% of the tasks have more than
one tasklet, as shown in Figure 2 in Section 4.1. Three
tasks had five or more tasklets, spanning three or more
days. Some complex tasks, such as the 6th task, had
twelve tasklets that spanned eight days. When a task
has multiple tasklets, it often interleaved with other
tasks. For example, within the eight days of the 6th

task, six other tasks were interleaved. Another example
is the 31st task, which was divided into seven tasklets
spanning six days, and mixing with three other tasks.

In summary, our study showed that task switching
occurred fairly often in the two projects. It will be
interesting to see whether this also happens in other
project teams in this company, or in other industrial
settings.

4.6.2 Interruptions

Our study also revealed some interesting aspects of
work flow and interruptions. If there is no activity
(i.e., an Eclipse editor event) detected by our plug-in
tool for a period of time, then there is a good chance
that the programmer has been interrupted, such as by
a phone call or by taking a break. However, except
by asking the programmer there is no reliable way of
determining which pauses are interruptions and which
are sessions of intent staring at a short piece of code
(viewing a long piece of code requires mouse or key-
board actions, which would be caught by the tool as
viewing events). However, our intuition and feedback
from the programmers suggests that interruptions are
the more likely occurrence.

There is a third case that must be considered. Inter-
ruptions detected by the IDE may not be interruptions
at all; often programmers need to perform activities
outside of the IDE to complete a task, such as examin-
ing a web page or accessing another tool that is external
to the IDE. Again, we must rely on feedback from the
programmers here: they confirmed that these “false
positives” did indeed occur, but were relatively rare.
They perform most of their work in Eclipse, except us-

7

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

ing another editor for editing xml files. Consequently,
we decided to interpret IDE-indicated interruptions as
genuine.

When interruptions occur in an IDE, the task con-
text within the IDE that is being maintained by the
programmer can be interrupted. When the program-
mer comes back to work on the task again, this task
context needs to be recovered. If interruptions happen
frequently, or if the task context is large, then recover-
ing task context may require significant effort. There
have been studies that try to help with task context
management and recovery [5], but without empirical
data about how interruptions occur in IDE, it is hard
to evaluate the importance of task context recovery.

We now report some preliminary results relating to
interruptions within IDE. More study and analysis will
be performed in the future.

We must first decide what an interruption is and
how it can be recognized. We use a threshold value
to distinguish an artifact being viewed/modified from
a likely interruption, such as a washroom break. We
calculate the elapsed time between each pair of con-
secutive events. If the elapsed time is greater than a
threshold value, we consider that an interruption has
likely occurred. Otherwise, we use it as the duration
of the first event.

Since there has been no study about how long a
period of time in Eclipse without any event should be
considered as an interruption, we tried different thresh-
old values. Table 4 shows the total interruption time
for each programmer if the threshold value is set to 5,
10, 30, and 60 minutes.

Table 4. Interruptions within Eclipse

Prog Eclipse #Hours / #Times of being interrupted
Time ≥ 5 min ≥ 10 min ≥ 30 min ≥ 60 min

P1 165 92.5 / 290 75.5 / 145 48.4 / 48 28.7 / 18
P2 57 22.0 / 92 15.7 / 39 7.0 / 9 2.2 / 2
P3* 98 63.1 / 112 58.5 / 72 44.5 / 24 36.3 / 12

*: P3 performed two overnight tasks. If we do not consider

the sleeping time as interruptions, then the number of hours

of being interrupted on the last line should all be decreased by

16.4.

We can see from the table that many interruptions
occurred while programmer are working in Eclipse.
Roughly speaking, the average case is that there is
a five minute interruption every half an hour, and a
ten minute interruption every 50 minutes. Since lunch
break is about one hour, the median frequency of in-
terruptions will be higher than the average.

In our after-study meeting with the manager and
the programmers, they admitted that they had no-

ticed the interruption problem. The software systems
maintained by the two teams are used by other teams
within the company, and the programmers are often
used as internal resources for expert advice and com-
plaints. They are often interrupted by email or phone
calls that ask them to fix bugs or explain what the soft-
ware system does. Although short interruptions of five
or ten minutes in our study may be due to normal de-
velopment activities outside of IDE, the programmers
expressed strong interest in a more detailed analysis of
their interruptions and how they relate to their work
patterns. This is an area of future research for us.

We have not studied what value should be set to
the interruption threshold yet. Our informal experi-
ence suggests that five minutes is a reasonable value if
programmers usually work actively within IDE. In the
remainder of this section, we will use five minutes as
the threshold value.

4.6.3 Time distribution within task

Knowing how much time was spent on viewing, modify-
ing, or being interrupted, and how many interruptions
occurred in each task, can help in understanding ex-
actly how tasks were performed. Figure 5 and Figure
6 show this information from our study:

Figure 5. Time distribution

Figure 6. Number of interruptions

Figure 5 shows that in many tasks, interrupted time
is larger than viewing time and modifying time. Large

8

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

Table 5. Viewing times and duration compari-
son

Method+ level

Modified Viewed only
Total Number 1183 1529

Median Average Median Average
Times 10 34.8 2 4.6
Duration 34.3 186.8 8.2 42.2

File level

Modified Viewed-only
Total Number 246 343

Median Average Median Average
Times 72 179.9 4 11.2
Duration 381.6 1012.1 24.4 105.8

tasks tend to have long interruption times. For exam-
ple, the four longest tasks, the 6th, 31st, 38th and 39th

tasks, have the four longest interruption times. As we
can see by combining Figure 5 and Figure 6, these long
interruption times are not due to a small number of
long interruptions, but rather are due to many inter-
ruptions. For small tasks, some were not interrupted
very much, such as the 14th and 19th tasks, while oth-
ers had long interrupted time with many interruptions,
such as task 20th, 41st and 42nd.

If comparing Figure 5 and Figure 6, we can see that
the two figures look very similar. This may suggest that
the number of interruptions is related to the duration
of a task. It may also suggest that some common in-
terruption patterns exists among all of the tasks. Such
pattern may be related to the organization dynamics
or the social structure of the team and the company.

We can also see that the time spent on viewing is
much larger than modifying. The median value of the
ratio between viewing time and modifying time is 16.
This conforms to the common notion that much of
programmer’s time is spent on program understanding
rather than making changes.

4.6.4 Viewing times and duration comparison
between viewed-only and modified

Information about how many times a program artifact
was viewed and for how long can be important. Within
a task, a program artifact that was viewed for twice
may be less important than a program artifact that was
viewed 20 times. Within a project, program artifacts
that are often viewed by different programmers may
indicate that they are the key artifacts of the software
system.

Table 5 shows viewing times and duration for modi-
fied artifacts and viewed-only artifacts, at the method+
level and file level.

It is perhaps unsurprising to see that the changed ar-
tifacts were viewed more often and longer than viewed-
only artifacts. When a piece of code needs to be
changed, programmers will be more careful under-
standing what the code does and reasoning about its
effect on other code. It is also interesting to see that
the difference between modified and viewed-only arti-
facts becomes much bigger at the file level. For exam-
ple, the median duration of modified vs. viewed-only
at the method+ level is 4.2 (34.3/8.2). It becomes 15.6
(381.6/24.4) at the file level.

Based on the information about how many times
and how long a program artifact was viewed, we have
tried to find development “hot spots” within a project
— that is, artifacts that are accessed frequently in a
project. A development hot spot may indicate that
it is a key component of a project, or it is hard to
understand.

One file named JDBCDataSession.java in a devel-
opment branch was found to be accessed in 11 tasks
performed by P1. It was modified in six tasks, and was
viewed only in the other five tasks. When we asked the
manager why this file was accessed so often. He said
that it is a kernel class of the project and therefore
is relevant in many tasks. Anecdotally, we noted that
this file has endured steady growth over time, and we
wonder if it may soon need to be refactored.

5. Related work

5.1. Task structure

The work most related to our research is task struc-
ture as proposed by Murphy et al. [7]. A task struc-
ture is defined as “the parts of a software system and
relationships between those parts that were changed to
complete the task”. The working version of task struc-
ture, task context, consists of parts and relationships of
artifacts that are relevant to a developer as they work
on the task. The relevance can be determined using
different methods, such as the degree-of-interest(DOI)
model [5] and structural dependency analysis [8].

Several types of applications can be built based
on task structure, including recommending task rel-
evant information, making IDE be more aware of the
task context, sharing task structures within distributed
team and forming a group memory.

Our goal is similar to this approach, that is to
model knowledge relevant to understanding and solv-
ing a task, and use it to improve software development.
The major difference is that we consider program ar-
tifacts that were viewed only as an important part of
the knowledge model.

9

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

5.2. Mining software repository

A version control system that records historical
changes can be used to develop techniques that help
developers with their maintenance tasks. For example,
it can be mined to identify logical coupling between
program artifacts [2], recommend relevant files based
on change patterns [11, 10], and locate experts within
an organization [6].

The information recorded in version control system
only consists of changes and brief comment describing
each change. When reviewing these comments, other
developers often still do not understand what happened
in detail [3]. Actually, this is one of our motivations
to includes both viewed-only and changed program ar-
tifacts in a repository. We hope by including more
artifacts that were related to program understanding,
developers can reduce their time understanding past
changes.

6. Summary and future work

Program artifacts that are only viewed during main-
tenance tasks capture important knowledge about how
a task can be understood and solved. However, current
approaches only model and capture the artifacts that
have been changed; artifacts that were viewed but not
changed are ignored. Our empirical study has shown
that that these view-only artifacts do exist and their
number is larger than the number of changed artifacts
in most instances, therefore justifying the importance
of studying these viewed-only artifacts.

Informal data from this study also shows that our
approach of creating a repository is feasible. Using
the repository, we are able to observe many interest-
ing phenomena in software development, such as task
switching and interruptions within IDE.

We consider that the study we have presented in this
paper, while fairly preliminary, suggests many possible
avenues of future research. One idea we intend to ex-
plore is to more carefully characterize and model task
knowledge structure. Another idea is to improve the
plug-in tool we used to build the repository. We will
also explore the creation of more applications based on
such a repository.

7. Acknowledgments

We would like to thank BokeSoft Shanghai, China
for providing the industry setting for this study. We
would also like to thank the manager and all the partic-
ipants in this study, for their precious time and valuable

feedback. We would also like to thank the anonymous
reviewers and Susan Sim, the WCRE-06 program co-
chair, for their advice on the structure of this paper.

References

[1] Eclipse. http://www.eclipse.org/.
[2] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release

history data for detecting logical couplings. In IWPSE
’03: Proceedings of the 6th International Workshop on
Principles of Software Evolution, page 13, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[3] R. E. Grinter. Using a configuration management tool
to coordinate software development. In Proceedings of
the Conference on Organizational Computing Systems,
pages 168–177, Nov. 1995.

[4] JDT. http://www.eclipse.org/jdt.
[5] M. Kersten and G. C. Murphy. Mylar: a degree-

of-interest model for ides. In Proceedings of the 4th
International Conference on Aspect-oriented Software
Development, pages 159–168, July 2005.

[6] A. Mockus and J. D. Herbsleb. Expertise browser:
a quantitative approach to identifying expertise. In
ICSE ’02: Proceedings of the 24th International Con-
ference on Software Engineering, pages 503–512, New
York, NY, USA, 2002. ACM Press.

[7] G. C. Murphy, M. Kersten, M. P. Robillard, and
D. Cubranic. The emergent structure of development
tasks. In Proceedings of the 19th European Conference
on Object-Oriented Programming, July 2005.

[8] M. P. Robillard and G. C. Murphy. Automatically in-
ferring concern code from program investigation activ-
ities. In Proceedings of the 18th International Confer-
ence on Automated Software Engineering, pages 225–
235, 2003.

[9] J. Singer, T. Lethbridge, N. Vinson, and A. N. An
examination of software engineering work practices.
In Proceedings of CASCON’97, pages 209–223, 1997.

[10] A. T. T. Ying, G. C. Murphy, R. T. Ng, and M. Chu-
Carroll. Predicting source code changes by mining
change history. IEEE Transactions on Software Engi-
neering, 30(9):574–586, 2004.

[11] T. Zimmermann, P. Weisgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering, pages
563–572, Washington, DC, USA, 2004. IEEE Com-
puter Society.

10

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

