
I) A technique to
avoid intemptions
during p rogramming
uses color and
infomation hiding to

provide ewor repovts
on demand, rather
than when you least
want them.

Error Reporting
with Graduated
Color
BRUCE OBERG, Microsoft
DAVID NOTKIN, University of Washington

Y

ness of color displays is well accepted in
applications like hardware design, many
people are not convinced that color serves
any special purpose in a programming en-
vironment. However, we found in investi-
gating practical applications of color, that
it can be used quite effectively to notify the
programmer of errors without forcing him
to correct the error in the middle of a task.

Color for nonintrusive error notifica-
tion is not a new concept. Some spell
checkers display misspelled words in a dis-
tinct color, for example, without requiring
the user to correct the error immediately.
In programming, however, simply using
color to display an error is not enough.
The programmer must have some way of
knowing how old the error is and more
detailed information about it in the form
of an error report.

To satisfy those requirements, we
combined graduated color with elision-
the temporary hiding of information-

and applied it to the Comell Synthesizer
Generator. ' Our goal was only to demon-
strate that color can be used in h s way,
not to produce a validation study. Al-
though we have not tried to formally mea-
sure productivity, h e resulting prototype
seems pleasing and largely natural, and
there should be at least some productivity
increase because programmers are not in-
terrupted in the middle of a task and
error-navigation paths are not limited.

The amount of work was quite moder-
ate, in large part because we enhanced a
synthesizer generator that was written ex-
tensibly with good facilities for error re-
porting and display control. Nonetheless,
the techniques we use are straightforward
and enhancements might be easier for a
tool than for a tool generator.

The prototype is just over 1,000 lines
of uncommented C code. Although it is
suitable only for X Window- System, Ver-
sion 1 1 Release 3 editors, we tried to make
design decisions that would facilitate inte-

gration with other display systems as well.
Bruce Oberg, who designed, coded, and
tested the implementa-

and thus possibly more critical- errors
gradually more visible makes the user

aware that the error is old

while elision provides the full error report
only when it is requested. The users can
see errors and their age by the color and
then, by clicking on a mouse, for example, ,

can look at the associated error explana-
tion when they are not busy. Interruption
is kept to a minimum during notification,
and the explanation is close at hand and
complete when it is wanted. Also, com-
bining graduated color and elision made it
easy to divide error reporting into the
smaller, easier jobs of notification and ex-
planation.

Not*&ation.The role of notification is
to indicate only that an error has oc-
curred. so it can be made less intrusive

tion, had prior develop-
ment experience, but he
did not have to know
an&g about the gen-
erator or the speafic dis-
play systems we eventually
used.

guishes it from others.

Explanation.To handle explanation, it
might be tempting to create new visual
objects, like windows. However, if you
then used a color to distinguish an expla-

’ nation or to link it with the actual error,
you could run into color overload- the
human eye can distin ish only about
seven colors at a time. ’, To avoid &IS, we
handle error explanation through elision.
Elision lets the user focus on the task at
hand. An example is the outlining modes
in some word-processing systems, whch
let the user focus on the structure of a doc-
ument while temporarily disregarding
the actual text.

P . .

GRADUATED COLOR
AND ELISION

Graduated color and
elision are a Dowerful

and that it’s probably
about time to look into it.
Althounh we do not per- - -
sistently store informa-
tion about the age of er- Graduated color

preserves the age ot rors in our prototypej we
see no practical difficul- the error. Elision ties in doing so. - provides 0 complete Thisuseofcolorisdif-
ferent from most applica-

senting an object in the
real world. nor is it strict-

error report when tions. Color is not repre-

needed.

than error reporting. On the other hand,
delaying full notification of an error
merely because you don’t want an inter-
ruption is not desirable either because the
user may believe that some later, unrelat-
ed action was related to an earlier error.
This is where the variance of color can be
useful.

Graduated color preserves the age of
the error; the older the error, the more in-
tense the color. If the user fixes the prob-
lem very quickly, the slight coloring
would be hardly noticeable. Program ed-
itors are particularly suited for this ap-
proach because even expert users can er-
roneously insert a new variable before its
declaration. Slowly increasing the inten-
sity of a notification color lets the user
continue a train of thought. M a h g old-

Elision involves the reformatting of an
existing display object, usually with some
sort of abbreviation to indicate that elision
has taken place. Most certainly, elision is
only useful from an error-reporting
standpoint if there is some indication that
an object is elided; hding too much error
information is equivalent to not reporting
at all.

CHANGES TO THE GENERATOR

Given a description of a language’s
syntax and static semantics, the Come11
Synthesizer Generator produces a syntax-
directed editor that supports interactive,
incremental error checking. Release 3.0
lets you use the color facilities of several
window systems for omaniental coloring.

The editors included with the generator
report errors either immediately, usually
as a comment, or not at all.

The generator provides a good base
to implement graduated color. It has fa-
cilities for advanced visual displays,
error handling, and simple elision, as
well as fully functional editors for vari-
ous languages. Because the mecha-
nisms for error detection and reporting
were already there, our only task was to
separate them.

The changes we made were to the
generator’s Synthesizer Specification
Language, described in the box on p. 35,
and we did not have to change SSL to
support color. Mre made the following
changes:

+Expanded SSL style and style-file
capabilities to let the generated editors
use graduated (or plain distinctive) color
and to allow different coloring schemes
for different errors.

+Added the concept of time passage.”
+ Simplified elision.

Expanding style.We expanded style de-
scriptions to define two attributes, fore-
ground and background color:

foreground ::= “*”[color] [“:”[color]
[“/”[speed] [“:”[delay]]]]

background ::= “#”[color] [“:”[color]
[“/”~speed][“:”[dela~]]]]

color ::=

speed ::=

delay ::=

description I “:>” I “#” I ‘“’

The simplest way to use these at-
tributes is to specify only the first color.
Text with that style is then colored as des-
ignated. For example, substituting “blue”
for the first occurrence of [color] in the
foreground line would make the letters of
the text blue; substituting “yellow” for the
first occurrence of [color] in the back-
ground line would make the background
yellow. In XllR3 (X Window System,
Version 11, Release 3), the description
part is a color name that the system trans-
lates into the appropriate low-level color
description.

A more complex use of foreground
and backpound is to specify two colors
separated by a colon. This means that
an object’s color should move from the

I -
. -

first color to the second as the object
gets older. That is, the object is initially
drawn in the first (or ipal) color, and as
time passes, the color is changed to be
more and more &e the second (destina-
tion) color.

Eventually, the object will have the
dest inat ion color, which will n o t

change. Either (but not both) of the two
color descriptions can be left blank, in-
dicating that the current background or
foreground color should be used; #:ma-
genta, for example means that an ob-
ject’s background color should change
from the current background to ma-
genta. Specifying * or # for a descrip-

SYNTHESIZER SPECIFICATION LANGUAGE
The Cornell Synthesizer

Generator uses the
Synthesizer Specification
Language to specify an editor
for a particular language. All
the examples here, for
instance, are taken from the
Pascal editor description that
comes with the generator.
Some are edited for clarity.

Program elements are
described within SSL in
terms ofphyla, which can be
thought of as prototype
descriptions of the nodes in a
language’s syntax tree. Phyla
are very closely related to
productions In context-free
grammars or Backus-Naur
format descriptions. For
example, a for statement
phylum such as

statement: ForTo (identi-
fier expr expr statement)

specifies that it is made up of
an identifier, start and stop
expressions, and a target
statement. The identifier
phylum specifies that it can
be only an alphanumeric
token; the expression
phylum specifies that it can
be a constant, an identifier,
or a combination of two
expressions with a binary
operator between them. The
actual program the user
enters consists of instances of
phyla, called productions.

A phylum’s display format
is described separately from

its structure. Unparsing
strings describe how the
editor displays a production.
A possible unparsing string for
the for statement phylum is

ForTo[A : “for” Q ” :=
‘‘@,to “@,do %t%n” Q
“%b”]

When an instance of a for
statement is to be displayed,
the strings within double
quotes are output (almost)
verbatim. The 0 signs are
placeholders corresponding
to the four components of a
for statement in the phylum’s
definition. The unparsing
string for the components is
inserted a t their respective
placeholders when the for
statement is displayed.

The % escapes within
double quotes are similar in
intent to formatting
commands used by the
printf0 function in C. The
%t, %n, and %b escapes
direct the editor to increment
the tab level, insert a new
line, and decrement the t;?b
level, respectively. These and
other escapes let you fine
tune the display of
productions. The pair of
escapes of concern to us in
our modification is “%S(”

W i h n an unparsing
string, “% S(” and “% S)”
bracket text that will be
displayed in a specific style.

and “%S).”

tion indicates that the default X l lR3
foreground (or background) for the ed-
itor window should be used.

Adding time passage. How fast an object’s
color moves is specified by the speed part
of the foreground and background colors.
Speed is specified as an integer from 1 to

In this example, keyword
parts of the for statement
unparsing string are
bracketed to be shown in a
style called Keyword:

ForTo[A

“%S(Keyword:for%S)” @
:= U@’’

“%S(Keyword:m%S)’=@
“% S(Keyword:do% S)

%t%n” Q “%VI
SSL requires that the

Keyword style be declared
among a list of possible styles,
but the attributes associated
with Keyword are not
specified. Instead, the user
defines them at runtime in a
style file:

fonts (timr24, helvrl8);
largest: timr24, +bold ;
Normal: timr24 ;
Keyword: +bold ;
Placeholder: +italic ;
Error: +bold, +italic ;
Comment: helvrl8;

All fonts are listed first in
the fonts section of the style
file. The exact interpretation
of font names depends on the
display system. Subsequent
entries associate attributes
with particular styles.
Specifylng a font name tells
the system to use that font
once the style is invoked via
%S. If no font is listed, the
editor’s current font is not
changed when the style is
invoked. The +bold

specification indicates the use
of the bold form of the style’s
font; +italic indicates the
italic form. The -attribute
form indicates that an
attribute (such as italic)
should be turned off;
!attribute toggles an attribute.

SSL also provides a
minimal elision capability.
Any phylum can list two
unparsing strings: a default
(the first listed) and an
alternate (the second):

ForTo [A : “for” 0 ” := “
Q ” to ” Q

“ do %t%n” Q “%b”
I

[: “for“ @ error ” := @

“ do %t%n” 0 “%b”

While using the editor, the

to ” 0

user can select a production
and request that it be
displayed using a particular
unparsing string or
whichever unparsing string is
not current. In this example,
an alternative scheme can be
used to elide a production’s
error reports. The error
symbol is a local variable to
each ForTo production and
when such a production
contains an error, the error
variable for that production is
set to a string describing the
error. By toggling between
unparsing strings, the user
can turn error reporting on
and off.

I E E E S O F T W A R E 35

I ~-

I '

(non-inbwive error reporting - 1)
program demo (output);
w u

counter: integer;
begin

for counter f --TYPE UFLAST VALUE NUT
CK?RRECT] := startvalue f--IDENTPfER NUT
DECLARED] to 'a' do

unter);

end. { demo }

433434 V Q c t l
Positioned at statement-seq { begin if ifthen case while repeat
forto ford- with := c a l l goto nrl l p819e : (begin

Figrcre I . Intnisive ewor reporting

[non-inIrusive error reporting - 2)
program demo (output);
var

counter: integer;

for counter := startvalue to
begin

do
C-S&?&WZW.Z.>

end. { demo }

433434 VQCCE
Positioned rt expr I <, (I > >E i n + - r d or I div mA not U
P- n i l set emptyset c a l l [. A =simplify =dellorw.n Lrrr

Figure 2. Yo i72itial error reporting.

100 and describes what percentage of the
destination color should be mixed in after
each unit of time, or tick, passes. A tick
corresponds to a keystroke.

The keystroke convention seems rea-
sonable, compared with a real-time defi-
nition of ticks. Not only is it cheaper (you
avoid the cost of alarm-signal interrupt
handlers), but keystrokes seem to be a
more accurate measure of how much
work the user is doing. While the user
thinks about a passage of code without
typing anydung, real time is passing and a
changing color might be unnecessarily in-
trusive. Timing through keystrokes pro-
vides some measure of assurance that
moving color will be distanced from what
the user is concentrating on. In addition,
the use of keystrokes could easily be ex-
panded to encompass all user events (such
as mouse clicks).

The default speed is 1, which means
that an object using a style that contains
the attribute #yellow:red could initially
have a yellow background, but after one
tick (keystroke), the background will be
changed to be a yellow-red ratio of 99: 1.
After 50 ticks, the ratio would be 5O:SO
(orange), and, after 100 ticks, the back-
ground would be entirely red and remain
that way.

A color's motion may be postponed.
Specifymg the delay (again, an integer)
part of the moving color attribute post-
pones adding the destination color into

I thc inis until aftcr the specificcl numberoi
ticks. For e s n m p I e , t h t' a t t ri b ti tc

1 *green:purple/10:20 means that text is
originally displayed in green, and, after
20 ticks, purple is mixed in at the rate of 10

{non-inbusive error reporting - 3)

var
program demo (output); , percenta tick. counter: integer;
begin
for counter := startvalue to 'a' do

unter);

end. { demo }

I I
0

a434
Positioned r t statement-se({ bugin if ifthen case -le repeat
forto fordown with := c a l l goto nr l l prwa : (begin

Simplifying elision.When an editor is
generated in the unmodified version of
the generator, the middle mouse button
has no function. The other two are used
for location and selection and menu-
based commands. To make elision of a se-
lected area easier, we made the middle
button act as the location and selection
button adding the ability to switch un-
parsing smngs for that area. When the
user clicks on the middle button. whatev-

I I er area is selected is given to the altemate-
Figure 3. I.fultzple wweported e m m ~ unparsing-toggle command. Alternate

~~~ ~ ~ ~~ 
~ ~~~ 

~ 

3 6  N O V E M B E R  1 9 9 2  

1 -  



SAMPLE DISPLAYS 

x 



I ‘  

[non-intrusive error reporting - 7) 

var 
program demo (output); 

counter, startvalue: integer; 

end. { demo } 

Q 

We do not recommend any specific 
coloring poliq- not even the one we 
used. Our purpose is merely to provide a 
way for system designers and interface ex- 
perts to exploit and experiment with color 
in novel ways. 

355430 0 cosrole 
Positioned a t  s tatmrt-se(  { ford- =rbile 

Figure 7. Cunwtiuii mid elision. 

(non-inbusive error reporting - 8) 

var 
program demo (output); 

counter, startvalue: integer; 

for counter := startvalue to [II1 do 
begin 

writeln( counter) 
end. { demo } 

li 
355QO 
Positiowd rt expr =simplify =detEorgrr Laws 

show. A curious race occurs if two errors 
of types Error A and Error C are created 
at the same time. Which will get to full sat- 
uration first? Error Cwill get the jump be- 
cause of Error Ais longer delay. After 10 
ticks, though, Error Astarts up and takes it 
to full saturation after 50 ticks, when Error 
C is still at only 30-percent saturation. 

5 shows. Using elision, the user could s nonintrusive error reporting worth it? 
expose the exact nature of either error. The answer depends on how useful you 
Figure 6 shows the result of eliding the find it and how much effort is involved. 

sections become fully colored, as Figure 1 

undefined symbol error. T h e  elision of 1 Although our prototype is small and the 
regions with errors and the resolution resulting evidence is largely anecdotal, we 
of those errors could be done in any , believe it demonstrates the feasibility of 
order, at the discretion of the user. In ~ pursuing such an approach either in larg- 
Figure 7 ,  the undefined symbol has 1 er, more widely used systems or in cogni- 
been corrected and the type misniatch tive experiments that consider the effec- 
has been elided. When all apparent er- 1 tiveness of using gnaduated color for error 
rors have been corrected, as in Figure 8, ~ reporting. 

no  colors indicating errors remain. 
Note that a semantic error still exists 
within the program in Figure 8; the 
variable s t amdue  is used before it is set. 
This is the result of less-than-adequate 
error detection within the editor. If an 
error cannot be detected, any fonn of 
reporting mechanism becomes useless. 

After enough time passes, both error ~ 

~’ 

ACKNOWLEDGMENTS 
This work was done while Oberg was an em- 

ployee of Al‘KtT Bell Laboratories. We thank 
Steve Mann, who helped with the original pho- 
tographs for the figures. 

Research for this article was supported in part 
by National Science Finmdation grants CR- 
8858804 and CCR-9113367 and by grants from 
Digital Equipment Corp. and Xerox. 

REFERENCES 
1, T. Reps and T. Teitelbauin, The Synthesizer 
Genennto~: A Syrtemfbr Constructing Laiz- 
gutigr-Birsrd Editon. Springer Verlag, 
Berlin, 1088. 

2. P. Robertson, “ A  Guide to Using Color on 
Alphanuineric Displays,” Tech. Report 
TR.12.183, IBA1 UKLaboratories Ltd., 
Hurslev Park, UK, 1979. 

3. J. Rice, “Display Cmlor Coding: 10 Rules of 
Thunh,“LEEESGj&”Jm. 1991,pp. 86-8 

4. B. Oherg, “Nonintrusive Error Reporting: 
One Use of Interactive Color Displays 
i2’ithin S o h a r e  Environments,” masters 
thesis, Univ. of Lt’ashington, Seattle, 1089. 

Bruce Oberg is a software- 
design engineer at Micro- 
soft, where he is interested 
in software engineering, 
cryptography, and virmal re- 
ality. 

Oberg received a BS in 
mathematics from the Uni- 
versity of Nebraska, Lin- ’ coln, and an MS in coinput- 

er science from the University of Lt’ashington 

David Notkin 15 an associate 
professor of computer \CIF 

e n w  and engineering at the 
University of M’ashington 
111s research interests are 
s o b a r e  engineering, soft- 
ware evolution, s o h a r e  re- 
structuring, programming 
environments, and parallel 
and distributed srstenis 

Notkin rrceivcd an ScB from Brown University 
and a PhD from Carnegie Mellon University. 

Direct questions about this article tu Notkin at CS 
and Eng. Dept. University of M’ashington, FR-3S, 
Seattle, \f’% 98 105; Internet notkin@cs.washington. 
edu. 

38 

~ 
~~ ~ ~ 

N O V E M B E R  1 9 9 2  


