THE EFFECT OF BREAK TASK ON PERFORMANCE DURING A

SECOND SESSION OF BRAINSTORMING

by

KARIE ANN COLACICCO MITCHELL

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN PSYCHOLOGY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 1998

Copyright © by Karie Ann Colacicco Mitchell 1998 All Rights Reserved

ACKNOWLEDGMENTS

Thank you to everyone who helped me complete this thesis project. Dr. Paulus and his lab, especially Vicky Putnam, without whom I would not have known how reliable my data really was. I also thank my parents and sisters who have supported me in so many ways, encouraging me to do my best. And last, but not least, Paul Travis Mitchell, my husband, without whom this paper may have never been written.

March 2, 1998

ABSTRACT

THE EFFECT OF BREAK TASK ON PERFORMANCE DURING A SECOND SESSION OF BRAINSTORMING

Publication No._____

Karie Ann Colacicco Mitchell, M.S. The University of Texas at Arlington, 1998

Supervising Professor: Paul B. Paulus

Almost since the beginning of group brainstorming research, studies have looked for ways to increase its effectiveness. One method involves the use of brief breaks from idea generation during the brainstorming session. This study examined the impact of various types of tasks performed during the breaks. Participants brainstormed for two ten-minute sessions with a two-minute break between sessions. Four break conditions were tested. In one condition participants were reinstructed on the brainstorming task and rules. In a second condition participants named an object for each letter of the alphabet. Participants were asked to rest in the third condition. In the fourth condition participants wrote down their ideas during the break. In a control condition there was no break. The number of ideas spoken aloud was used as a measure of productivity. The strongest effect was the superior performance of reinstruction participants in comparison to the control condition participants.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	iii
ABSTRACT	iv
ILLUSTRATIONS	vii
TABLES	viii
Chapter	
I. INTRODUCTION	1
II. METHOD	12
Participants	12
Procedure	12
Assessing the Data	14
III. RESULTS	15
Experience Factor	15
The First Ten Minutes	16
The Last Ten Minutes	17
Last 12 and Overall 22 Minutes	18
Difference Results	18
IV. DISCUSSION	22

Appendix

A. STATEMENT OF CONSENT FOR PARTICIPATION IN THE EXPERIMENT	27
B. RULES FOR BRAINSTORMING AND THE THUMBS PROBLEM	29
C. QUESTIONNAIRES	31
D. ABBREVIATIONS	42
E. ANOVA ON ALL PARTICIPANTS WITH THE EXPERIENCE FACTOR	44
F. ANOVA ON EXPERIENCED PARTICIPANTS ONLY	61
G. ANOVA ON ALL PARTICIPANTS WITHOUT THE EXPERIENCE FACTOR	67
H. ANOVA ON INEXPERIENCED PARTICIPANTS ONLY	76
I. RELIABILITY TEST FOR ALL PARTICIPANTS	89
REFERENCES	91

LIST OF ILLUSTRATIONS

Figure	'age
1. The number of ideas difference from the last five minutes before the break to the first five minutes after the break.	20
2. The number of ideas for first and second five minute segments before the break and third and fourth five minute segments after the break.	21

.

LIST OF TABLES

Table	Page
1. Mean Number of Unique Ideas for Experienced and Inexperienced Participants for All Break Conditions	16
2. Mean Number of Unique Ideas for Inexperienced Participants After the Break	18

CHAPTER I

INTRODUCTION

Brainstorming has been used as an effective tool for generating novel ideas about a problem (Parnes & Meadow, 1959). However, research has shown that group productivity has almost never been equal to the combined performance of the same number of individuals brainstorming alone. Various reasons have been cited as to why individuals brainstorm better alone than in groups, such as social loafing, when individuals rely on the other members to produce ideas; production blocking, the physical inability for more than one member to talk at a time; and matching of low performance, when individuals match their performance to the rest of the members of the group so no one does better or worse than any other member in the group (Diehl and Stroebe, 1987, 1991, Paulus and Dzindolet, 1993). This productivity gap has caused interest in increasing brainstorming productivity for groups and individuals.

One possibility for improving group brainstorming performance is the inclusion of a break during the brainstorming session. It seems intuitive that taking a break, getting away from the object of focus, helps improve our focus when we return. We note in our personal lives that getting a good night's rest or taking a walk feels useful in solving more complex problems. Getting away from a problem seems to help bring us to the answer, sometimes faster than actually sitting down and puzzling it out.

1

Osborn (1963) and Csikszentmihalyi and Sawyer (1995) wrote about the power of getting away from a problem. Evidence suggested if one sat down with a problem too long, the person might get stuck in a rut, thinking of the same thing over and over. In Osborn's (1963) book, he offers several anecdotes about successful "idea" people, and that they all did something completely unrelated to their work when trying to solve a problem. It was during this time that they developed some of their novel ideas. Csikszentmihalyi and Sawyer (1995) suggested an alternative look at the nature of insight and incubation. Insight, a solution or new way of looking at a problem, arose from long periods of intense involvement with a problem followed by incubation, a rest period during which active work on the problem was not done. From interviews they completed with nine people with various careers, they found a common feature in these people's work habits and idea generating process. Many would immerse themselves in a problem, working intensely for long periods of time with others, asking for help and ideas. Then almost all would find some sort of mindless physical task, like gardening or hiking. They are usually alone during this experience. During or after this type of activity new ideas or a new way of looking at the problem may arise. These types of incubation effects have also been shown in some empirical studies.

Several studies have been done to offer support that breaks or incubation periods increase success in problem solving in various types of tasks. Browne and Cruse (1988) had participants individually solve a problem in which they had to divide an 'L' shaped piece of land into four equal parts. There were five conditions in the experiment; three with five minute breaks between the first and second ten minutes of the solution time, and two conditions that had no break during their solution times. One condition had twenty minutes of solution time and another had twenty-five minutes of solution time. Of the first three, one condition had participants trace a graph picture that offered a hint to the problem they were solving. The second had participants relax during the five minutes, and the third had them memorize a difficult map, ostensibly to recall this later. The other two conditions were to check to see if having twenty-five minutes of problem solving time would be significantly better than having twenty minutes of problem solving time. Results from Browne and Cruse's (1988) experiment showed that getting a hint, relaxing during the break, and having twenty-five minutes to solve the problem led to better performance than doing excessive mental work like reading a map or only having twenty minutes. Relaxing was significantly better than the twenty minutes and the map memorization conditions. The other conditions were not significantly different from each other. This study supports Woodworth and Schlosberg's (1954) fatigue hypothesis that not doing anything would be the best "activity" during an incubation period. They believe that doing nothing helps the brain rejuvenate after long periods of idea generating.

In an experiment by Kirkwood (1984) incubation was found to be effective in idea generation. He had participants form groups of four and brainstorm for thirty minutes. There were three conditions in the experiment. In one condition, the group had to discuss one problem for the entire thirty minutes. Groups in the second condition discussed two problems similar in nature. In a third condition participants discussed two problems that were not similar in nature. For the last two conditions, the groups would discuss the first problem for ten minutes, the second problem for ten minutes, and then resume discussing the first one for the remaining ten minutes. For all conditions, they began and ended discussing the same problem. Kirkwood (1984) also examined group dynamics to be certain that the nature of the problems did not alter the rate of discussion. He found no differences due to the type of problem but found that those who had discussed a problem not like the original one did significantly better than either of the other two conditions. Those who had discussed two problems that were similar in nature did not do any better than those who had discussed one problem for thirty minutes.

Goldman, Wolters, and Winograd (1992) looked at the length of incubation periods and their efficacy on problem solving. They had the participants work on solving anagrams. Then after a varying amount of time they would show participants more anagrams. Some had been presented before and some were new anagrams. The three conditions varied in the amount of time between first and second presentation. It was either 0-seconds from the first presentation, twenty minutes or 24 hours. Goldman et al. (1992) found 24 hours to be significantly better than the no delay condition, but no other pair-wise comparisons were significantly different. Goldman et al. (1992) also examined whether incubation was taskspecific or item specific. They compared new and old items from the twenty-minute and 24 hour conditions. They found that more old items than new items were solved during the second presentation for both conditions. This suggests that participants were solving previously presented anagrams and had not improved their ability to solve anagrams.

Yet not all evidence has been in support of incubation periods' positive effects for incubation periods. Offner, Kramer, and Winter (1996) had participants brainstorm for fifteen minutes about different topics. During that time, some groups of participants had four one minute breaks and another group received four fifteen second breaks. They also stressed the need to allow thoughts to be free flowing and to keep things moving at a rapid pace.

Results did not support the idea that breaks increase productivity. The reason for the lack of effect found in this study is not clear. Several factors may have contributed to the finding of results different from the previous studies. The experimental task of solving many different problems in fifteen minutes may not have been conducive to incubation effects. The variance in the length and number of breaks in each study could have had an effect on the results. The task done during the break might also have contributed to the difference in results. Since the various incubation studies are rather dissimilar it is difficult to understand why some support the incubation hypothesis and others do not.

Dzindolet (1993) encountered what appear to be incubation effects in her dissertation on blocking and social influence processes on brainstorming. She manipulated the level of experience her participants had on the brainstorming task and whether or not they could share their ideas during the interactive brainstorming session in two of her studies. Half of them worked on the brainstorming problem alone for five minutes, writing out their ideas. They were "experienced" participants. The other half read an article for the same amount of time. They were "inexperienced" participants. Then they came together to brainstorm. Half of the participants who had brainstormed shared their ideas with others, the "experienced-share" condition; the other half did not, the "experienced-withhold" condition. She expected a difference between the "experienced-share" and "experienced-withhold" conditions. With a limited pool of ideas, participants in the withhold condition should have fewer ideas available than the share condition. However, the withhold participants did just as well as the share participants, who could state all of their ideas during the session. There are a number of possible reasons for this finding. Possibly the break between the sessions helped increase productivity during the second session. It may be that the change in modality from writing to speaking allows different regions of the brain to work on the task. Rereading the instructions may have increased motivation in the participants during the second session.

Horn (1993) conducted a study to determine whether the modality change was important in the break effect. Half of the participants changed modes of brainstorming, some changing from writing to speaking, the others from speaking to writing. Half of them did not change modes. Participants in a "break" condition were stopped and given brainstorming instructions again, whether or not they changed modes of brainstorming. Participants in a "no-break" condition were given no break, were not reinstructed, and did not change modes of brainstorming. Horn found a significant difference between the break and no-break conditions in the number of ideas generated during the second session of brainstorming. People in the break condition performed significantly better than those in the no-break condition for the last ten minutes.

Research by Smith and colleagues (Smith, 1995; Smith & Blankenship, 1991; Smith & Vela, 1991) on fixation and incubation may provide clues about the break phenomenon in brainstorming. Fixation, or functional fixedness, is a "block to successful problem solving." Exactly what it is depends on the problem being solved, although the problems tend to be ones of insight rather than procedural. Problems of insight don't have "steps" per se but mostly "hit-or-miss" solutions. Incubation helps when the solution is not forthcoming, when someone steps away from the problem, seemingly to stop thinking about it. When one returns to the problem, or even in the middle of this break, a solution is reached.

Smith and Blankenship (1991) manipulated fixation and incubation. In their set of studies, they had participants do Remote Association Tests. In the RAT, participants were given a list of words. Three words are listed together and a fourth word must be found that will make a compound word or phrase with each of the other three. For example, the words ARM, COAL, and PEACH are listed; the correct solution is PIT. For their experiments, Smith and Blankenship (1991) manipulated fixation by "priming information inappropriate to the correct solution of the problems." That is done by pairing each word with a distracter for example: ARM-leg, COAL-furnace, PEACH-pear. These additional words are meant to misdirect the person's thinking. They were given a specific amount of time to solve each RAT problem. After that, for the incubation treatment, experimenters gave some participants a separate task as an incubation treatment. They read a science fiction story, and they were told that they would be quizzed on it. After reading the story, they were tested again. In experiments 1 and 2, they found that fixedness did decrease performance. Those who had been in the "fixed" condition performed significantly worse than those who were in the "nonfixed" condition. They also found that incubation increased performance for those in the fixed condition during retesting. Those who had an incubation period did better than those who did not. Those in the nonfixed condition did not show any difference between the incubation and no incubation conditions.

Experiment 3 by Smith and Blankenship (1991) showed that there were possible "levels" of fixedness. In experiments 1 and 2, the investigators had used "related" distracters. In Experiment 3, they also had "unrelated" distracters; for example: ARM-boy, COALpicture, PEACH-stereo. The results showed that the related condition did the worst, the nodistracter condition, the best, and the unrelated was in between. These results suggest that the more related the distracters, the more fixated your thoughts become. This seems to have a parallel in brainstorming. In brainstorming, participants try to think of novel ideas to questions about various topics. Results show participants will sometimes get "tunnel vision" when thinking about solutions for the open-ended question put to them. They may focus on certain categories for their ideas and may not focus on many others (Larey, 1994).

However, the experiments by Smith and Blankenship (1991) are rather restricted in their application. Most often we cannot control functional fixedness of a problem. A second set of studies done by Smith and Vela (1991) show a more applicable approach to fixedness and incubation. Smith and Vela (1991) did not manipulate fixedness in this study and only looked at reminiscence, the number of newly recalled words during a second test. They used a different set of problems: 50 line drawings of simple objects, five per page, had to be memorized. Participants were given thirty seconds to memorize each page, and then a free recall test was given after the last page was read. Participants had to write what they had seen, and drew a line every 60 seconds to show the number of recalled items per minute. Then participants received another free recall test, some after an incubation period. Smith and Vela (1991) used reminiscence, the number of new words recalled on the second test, as a dependent measure. They found similar results to those of Smith and Blankenship (1991). Those participants who had an incubation period had more reminiscence than those who did not have an incubation period.

In another study Smith and Vela (1991) tested what type of incubation would best increase reminiscence. Tacit recall theory suggests that "unfilled" will do better than "filled" because the mind needs time to think, albeit unconsciously. A second theory suggests that fluctuations in environmental context would increase reminiscence effects. The more the situation changes the new stimuli in the environment activate more memory. As in previous experiments, Smith and Vela (1991) used no-incubation and unfilled-incubation conditions. They also used a filled-incubation condition. In the unfilled-incubation treatment participants were asked to do nothing, just experience quiet time. For the filled-incubation condition, participants were given difficult maze problems to work on during the incubation period. Results showed that the filled-incubation condition did significantly better than the noincubation condition. The unfilled-incubation condition was in between the two and not significantly different from either the filled-incubation or no-incubation conditions. Yet, the trend does suggest that occupying the participant's mind with other matters will help increase reminiscence and lends support to the fluctuations theory. This result also agrees with the contextual fluctuation model of Mensink and Raaijmakers (1989). Their model suggests that context plays a large role in forgetting and proactive and retroactive inhibition.

The purpose of the present research is to replicate previous findings on the effects of breaks and to discover the possible mediating mechanisms. The theories of contextual fluctuation, fatigue, and memory retrieval block suggest that for improved performance, the mind should be cleared so that no idea is more "active" than another one. Getting away from the problem allows the mind to calm the "excited" regions of the brain working on the problem. Moreover, exposure to new contexts may allow new areas of the brain to become involved and allow for more diverse ideas to come to light. In the proposed experiment, several conditions were examined for effectiveness in refocusing the mind to think of new ideas during a second session. Four break conditions were used and one control condition. Two of the conditions, the control and the reinstruction conditions were replications from a previous experiment (Horn, 1993). Participants in the control condition brainstormed the entire session without interruption. In the reinstruction condition participants were reinstructed on the brainstorming task and rules during the break. In a second break condition participants had to name objects beginning with each letter of the alphabet. In a third break condition participants were asked to sit quietly during the break and do nothing. Participants in the fourth condition were asked to continue brainstorming but to write down their ideas instead of speaking aloud.

Woodworth and Schlosberg's fatigue hypothesis (1954) suggests that breaks simply help the brain to rest from the activity. The brain needs time to recuperate after having exhausted its energy to think, and the break allows this process to occur. According to this hypothesis the condition when there is no task during the break should increase performance during the second session of brainstorming more than any other condition. All the other conditions do not provide as much of a rest and should do as poorly in productivity as the control condition.

Other evidence from experiments by Smith and Vela (1991) suggest certain activities can help increase reminiscence effects. The contextual fluctuation model of Mensink and Raaijmakers (1989) suggests that accessing other areas of the mind will increase variation of thoughts and memories and increase reminiscence effects. This hypothesis suggests the greater the fluctuation in context, the less active the previous memories will be. Greater contextual fluctuations during the break could lead to greater performance during the second session of brainstorming. From this hypothesis, all breaks should increase productivity more than the control condition, but some break conditions could be better than other breaks. The more diverse the break task is from the brainstorming task, the more productive participants should be during the second session. The break written brainstorming task should be the worst of the break conditions, since it continues brainstorming on the same problem. The next worst should be the reinstruction condition, since the task is still within the confines of the brainstorming problem and rules. The break conditions of no task and different task should be the best since they do not involve the original brainstorming problem.

However, another hypothesis is that the break and/or rereading the task and rules for brainstorming provide an increase in motivation. Participants who have a break and have the rules and task instructions read to them again may perform better than those who do not have this experience because they are remotivated. The experimenter interrupts the participants, reads the problem and rules again and then expects them to continue brainstorming. The mere recitation of the rules and task information could increase the participant's motivation. Alternatively, the implicit expectation of the experimenter that the participants have more ideas during the second session can be a motivator. After the break is over the experimenter acts as though the individual will continue brainstorming through their actions, like preparing the recording device again and their words, such as "You may resume brainstorming." Those who don't have the break or the rules and task read to them may not have the same increase of motivation. According to the motivation hypothesis, either all break conditions should be the same, or the reinstruction break should do better than any other break condition.

CHAPTER II

METHOD

Participants

One hundred and eighteen students from the Introduction to Psychology course at U.T. Arlington participated as part of a course requirement. Because the participant pool was small during the semester when the experiment was run, students who had participated in brainstorming experiments before were used, including those who had done the task used in this study. Due to problems with equipment, only 106 participants provided viable data for the experiment, 21 in the Break Reinstruction condition, twenty-two in the Break Written Brainstorming condition, twenty in the Break No Task condition, twenty in the Break Different Task condition, and 23 in the No Break Oral condition.

Procedure

Participants were shown to a small room with a tape recorder, desk and chair. Each participant brainstormed alone. Consent forms were passed out before the experiment commenced. The rules for brainstorming were also handed out and explained in detail to the students. The four rules were: Rule 1: Criticism is ruled out. Rule 2: Freewheeling is welcome. Rule 3: Quantity and quality are wanted. Rule 4: Combination and improvement are sought. Participants were given the set of rules and the experimenter read them with the

participant and asked if they had any questions. They were asked to brainstorm about the Thumbs problem. The task was stated as follows:

The problem we want you to work on is called the Thumbs problem. We do not think this is likely to happen, but imagine for a moment what would happen if everyone after 1997 had an extra thumb on each hand. This extra thumb will be built just as the present one but located on the other side of the hand. It faces inward, so that it can press against the fingers just as the regular thumb does now. Here is the question: What practical benefits or difficulties will arise when people start having this extra thumb?

Participants were told how much time was allotted for brainstorming, twenty-two minutes for the control condition and two ten minute sessions, with a break of two minutes between each session, for each of the other conditions. The entire brainstorming session was recorded, including breaks, using audio tape recorders for each brainstorming participant.

The experiment had five conditions: a No Break Oral condition, a Break Written Brainstorming condition, a Reinstruction Break condition, a No Task Break condition, and a Different Task Break condition. The No Break Oral condition is a control condition. In the Reinstruction Break condition the experimenter read the brainstorming problem and rules to the participants again. For the No Task Break condition, the experimenter explained to the participants they would have a brief break and that the break was a rest period. Participants were asked to refrain from thinking about the brainstorming problem during the break. Instructions for the Different Task Break condition were to think of an object that began with each letter of the alphabet, beginning with the letter A, and so forth. The participants stated these objects aloud and were recorded on tape. If they completed the task before the two minutes were up, they were requested to repeat the task, each time thinking of new objects, until the time allotted had passed. This task was chosen because it was easily repeatable by the participants and could be done orally. Instructions for the Break Written Brainstorming condition were to continue brainstorming during the two-minute break but to record the ideas on a sheet of paper provided by the experimenter. Participants were encouraged to think of new ideas during the break and not to repeat ideas from the prior brainstorming session. After the break the experimenter returned and asked them to stop doing the break task. They were asked to resume brainstorming for another ten minutes.

After the brainstorming session was over, the students filled out a questionnaire (see appendix D) and were allowed to leave. The audiotapes were coded to provide information about the condition in which the participant participated. The tapes were transcribed and coded for each idea generated.

Assessing the Data

There are a number of ways of assessing the effect of breaks. Previous studies have examined the productivity in the period after the break. However, this method did not take into account the depletion effects in the no-break conditions. Participants in the No-Break Oral and Break Written Brainstorming conditions will have been brainstorming for two more minutes and may have a smaller pool of ideas available in the second session. For that reason the last twelve minutes were used as a measure of break effectiveness as well as the traditional measure of the last ten minutes. The number of ideas during the first five and second five minutes of each ten-minute session was also recorded. Two coders were used, one coding 25% of the data to check reliability of the other coder.

CHAPTER III

RESULTS

Performance was measured by counting the number of unrepeated ideas on the tape recording of the participants. An analysis of variance was done on the data followed by Duncan's Multiple Range tests to determine significant differences among conditions (see appendix D). Questionnaire data was coded and entered with the number of ideas generated for the thumbs task for each participant. No significant results were found for the data on the questionnaire.

Experience Factor

Due to the limited size of the research participant pool, participants who had prior experience in brainstorming experiments were not excluded from participating in the study. Only four participants said they had experience with the thumbs problem. They were excluded from the study. Yet, the experience factor had a significant impact on performance, with the experienced participants doing better than those participants who had no experience. This phenomenon occurred for the first five minutes after the break, $\underline{F}(9, 96) = 5.28$, $\underline{p} =$ 0.02, the second ten minutes, $\underline{F}(9, 96) = 4.54$, $\underline{p} = 0.04$, the last twelve minutes, $\underline{F}(9, 96) =$ 3.95, $\underline{p} = 0.05$ and the overall totals, $\underline{F}(9, 96) = 4.19$, $\underline{p} = 0.04$ (see table 1).

Table 1

		Experience Factor				
		Experienced	Inexperienced			
Time		<u>n</u> =45	<u>n</u> =61			
First 5 Minutes	Μ	21.13	15.16			
After the Break	<u>SD</u>	14.38	12.92			
Last 10 Minutes	M	34.71	24.87			
After the Break	<u>SD</u>	25.86	22.25			
Last 12 Minutes	M	36.44	26.95			
After the Break	SD	27.2	22.19			
Overall Total	M	88.33	69.92			
22 Minutes	<u>S</u> D	50.74	41.86			

Mean Number of Unique Ideas for Experienced and Inexperienced Participants For All Break Conditions

Since prior research usually used participants who had never brainstormed before, the data was partitioned into three groups. The inexperienced participant group consisted of those who had never done a brainstorming experiment (see appendix H). The experienced participants group consisted of only participants who had done a brainstorming experiment before (see appendix F), and an all participant group, which included all participants from the experiment (see appendix E). When the data were analyzed for the experienced participants group, there were no significant differences among break conditions. The rest of the results presented are only for the inexperienced participants.

The First Ten Minutes

During the first five minutes of brainstorming, the break conditions were significantly different from each other, <u>F</u> (4, 56) = 2.84, p = 0.0324. Participants in the Break No Task

condition ($\underline{M}=34.462$, $\underline{SD}=14.140$) had significantly more ideas than those in the No Break Oral condition ($\underline{M}=21.250$, $\underline{SD}=10.661$) or the Break Different Task condition ($\underline{M}=21.444$, $\underline{SD}=9.989$), but not significantly more ideas than participants of the other conditions. No significant effects were found during the second five-minute segment. Although the F-test was not significant, \underline{F} (4, 56) = 1.82, $\underline{p} = 0.1375$, according to Duncan's Multiple Range test for the overall first ten minutes, the participants in the Break No Task condition ($\underline{M}=55.769$, $\underline{SD}=25.959$) performed better than participants in the No Break Oral condition ($\underline{M}=35.938$, $\underline{SD}=20.809$) and Break Different Task condition ($\underline{M}=35.111$, $\underline{SD}=21.923$).

The Last Ten Minutes

During the first five minutes after the break, the break conditions were significantly different, <u>F</u> (4, 56) = 3.77, <u>p</u> = 0.0087. Break Reinstruction Task participants (<u>M</u>=23.50, <u>SD</u>=15.67) did better than No Break Oral participants (<u>M</u>=7.13, <u>SD</u>=8.33) and the Break Different Task participants (<u>M</u>=11.22, <u>SD</u>=9.65). For the last five minutes, the F-test was not significant, <u>F</u> (4, 56) = 2.22, <u>p</u> = 0.0779 but the Break No Task condition (<u>M</u>=14.62, <u>SD</u>=14.53) did significantly better than No Break Oral condition (<u>M</u>=4.25, <u>SD</u>=5.35) by Duncan's test. The overall last ten minutes of the brainstorming session revealed significant differences between break conditions, <u>F</u> (4, 56) = 2.96, <u>p</u> = 0.0273. Participants in the Break Reinstruction Task (<u>M</u>=33.60, <u>SD</u>=26.87), Break No Task (<u>M</u>=32.39, <u>SD</u>=25.65) and Break Written Brainstorming conditions (<u>M</u>=11.38, <u>SD</u>=12.05) (see table 2).

Condition		n	T53	T54	T210	T12	TOT
Break Reinstruction	М	10	23.50	10.10	33.60	33.60	75.90
	SD		16.54	10.77	26.87	26.87	39.35
Break Written Brainstorming	M	13	18.77	12.31	31.08	33.85	78.62
	SD		12.72	8.50	20.56	20.37	41.14
Break No Task	М	13	17.77	14.62	32.38	32.38	88.15
	SD		11.89	14.53	25.65	25.65	49.76
Break Different Task	М	9	11.22	8.11	19.33	19.33	54.44
	SD		9.65	10.02	18.97	18.97	38.39
No Break Oral	М	16	7.13	4.25	11.38	17.06	53.00
	SD		8.33	5.35	12.05	15.83	33.67

 Table 2

 Mean Number of Unique Ideas for Inexperienced Participants After the Break

T53 = The first 5 minutes after the break * T54 = The last 5 minutes after the break T210 = The last 10 minutes after the break * T12 = The last 12 minutes (including the break) TOT = Total Number of Unique Ideas

Last 12 and Overall 22 Minutes

The break conditions were not significantly different from each other for the last twelve minutes of brainstorming, <u>F</u> (4, 56) = 1.90, <u>p</u> = 0.1231. For the overall totals, there were no significant differences among the break conditions, <u>F</u> (4, 56) = 1.87, <u>p</u> = 0.1282.

Difference Results

Subtracting the number of ideas for the first five minutes after the break from the number of ideas for the last five minutes before the break yields a difference measure. A negative score means that the participant performed better after the break than before. Significant differences were found between the break conditions, <u>F</u> (4, 56) = 4.62, <u>p</u> = 0.0027. The scores of Break Reinstruction Task (<u>M</u>= -8.300, <u>SD</u>=16.371) and Break Written Brainstorming conditions (\underline{M} = -3.538, \underline{SD} =10.485) demonstrate that they do significantly better than No Break Oral condition (\underline{M} =7.563, \underline{SD} =9.245) (see figure 1). This difference can also be seen for number of ideas per five-minute segments. Only the lines for the Break Reinstruction Task and Break Written Brainstorming conditions have a positive slope from the last five minutes before the break to the first five minutes after the break. All the rest have a negative slope (see figure 2). The breaks in the Break Reinstruction Task and Break Written Brainstorming conditions helped productivity increase significantly during the second session, especially for the first five minutes after the break.

Figure 1. The number of ideas difference from the last five minutes before the break to the first five minutes after the break.

Figure 2. The number of ideas for first and second five minute segments before the break and third and fourth five minute segments after the break.

CHAPTER IV

DISCUSSION

The results of this study demonstrate that some types of breaks during brainstorming can have positive effects for individuals who do not have prior brainstorming experience. Consistent with prior research is the finding that the Break Reinstruction Task condition performed significantly better during the second session of brainstorming than the No Break Oral condition. The Break Written Brainstorming and the Break No Task conditions also helped increase performance during the second session in comparison to the No Break Oral condition. Only the Break Different Task condition did not perform significantly better than the No Break Oral condition after the break. The results of this study can be related to various theoretical hypotheses

According to the fatigue hypothesis, which states that inactivity helps the mind recover from idea generation, the Break No Task condition should have done significantly better than the No Break Oral condition. The Break Reinstruction condition should have done better than the No Break Oral condition, but it should not have done as well as the Break No Task condition. The rest of the conditions should not have been significantly different from the No Break Oral condition. The results provide partial support for this hypothesis. The Break No Task condition and the Break Reinstruction condition led to better performance than the No Break Oral condition, and the Break Different Task condition was not significantly different from the No Break Oral condition. However, the performance of the Break Written Brainstorming condition should not have been better than the No Break Oral condition. The difference score between the last five minutes before the break and the first five minutes after the break also did not support the fatigue hypothesis. The Break No Task condition had more ideas during the last five minutes of the first session than in the first five minutes of the second session, the number of ideas decreasing after the break. But the participants in the Break Reinstruction and Break Written Brainstorming conditions increased the number of ideas generated after the break. So the fatigue hypothesis gains only partial support.

According to the hypothesis that the experimenter's expectation for participants to continue to brainstorm after the break would motivate participants to produce more ideas during the second session, all of the break conditions should have done better than the nobreak condition. Although the Break Reinstruction, Break Written Brainstorming and the Break No Task conditions did perform better than the No Break Oral condition, the Break Different Task condition was not significantly different from the No Break Oral condition. Thus, the hypothesis that simply having a break motivates participants to do better is not completely supported in this study.

The notion of increased motivation caused by rereading of the brainstorming rules and problem also has some support. By rereading the brainstorming rules and problem, participants' motivation is increased and thus, their ability to produce more ideas. The participants who reread the problem and rules should do better than those who do not. The Break Reinstruction condition doing significantly better than the No Break Oral condition supports this hypothesis. However, the Break Written Brainstorming and Break No Task conditions did as well as the Break Reinstruction Task condition. These results suggest that the hypothesis may have been too simple. It was not just the rereading of the brainstorming rules and problem that helped increase productivity. The results shown here suggest that doing a task relevant to the brainstorming task might help increase productivity, provided the task is not brainstorming orally.

The contextual change hypothesis suggests that the greater the contextual change during the break, the better the performance of the participants. Participants who do a task during the break that appears contextually very different from the brainstorming problem should do better during the second session of brainstorming than participants who do a task that is more similar to the brainstorming task. This would suggest that the more different a break task is from the brainstorming task (e.g., the Break Different Task condition), the better participants would do. The Break Reinstruction Task and the Break No Task conditions were more productive than the No Break Oral condition. The participants in these conditions were doing something different task, the Break Different Task condition, was not significantly better than the No Break Oral condition. Moreover the condition with the least contextually different task, the Break Written Brainstorming condition, was better than the No Break Oral condition.

All of the hypotheses had some support yet at least one condition performed in a contradictory manner. Since none of these hypotheses completely fit the results obtained, a new model was developed. It is called the Modified Contextual Theory. The results of this study may suggest that what is needed to refocus participants is not a large contextual change

but a small one. For the Break Reinstruction Task the participants focus again on the brainstorming task and the rules but refrain from brainstorming. The Break Written Brainstorming condition changes the mode of brainstorming but helps the participants stay focused on the same task. The Break No Task condition doesn't prevent the participants from thinking about the brainstorming problem. Although the participants are not thinking about the problem consciously during the break, it is still active in their memory. The "modified" contextual change hypothesis suggests that too much change in context, as produced by the Break Different Task condition, or too little change as in the No Break Oral condition, may slow productivity in brainstorming. According to this new hypothesis, the change during the break must be slight and participants must still be able to focus on the problem or have recently been exposed to the problem without interruption. For novel problems, it might be necessary to simply refocus on the problem and not get distracted by heavy mental activity.

The results of the Dzindolet (1993) experiment are consistent with the contextual change hypothesis. Half of the participants brainstormed alone before they brainstormed with a group and the other half read an article not pertaining to the experiment. She had all the participants move from one room to another when they went from the "break" to the brainstorming task. Those who had brainstormed on the same task before joining the group did just as well as those who had not brainstormed before they joined the group. Of those who had brainstormed before, half could share their ideas from the previous brainstorming session and the other half could not share their ideas. There was no significant difference in the number of ideas generated in the withhold and sharing conditions. The change from one

room to another may have provided a contextual change that facilitated the continued brainstorming.

The present study did not try to replicate the contextual change of moving from one room to another. This potential difference of "physical" versus "psychological" change is one that needs to be evaluated in future research. Also the break of this experiment was shorter than those breaks during other experiments. Breaks in the studies by Dzindolet (1993) and Horn (1993) were approximately five minutes. The effects of the length of breaks and the number of breaks should be investigated.

The effect of the previous experience of the participants on their performance of subsequent brainstorming tasks could be an interesting study for the future. Correlation between a participant's performance during the first and second sessions could be measured to determine how the prior brainstorming session affects the participant's performance during the next brainstorming session. If there were two or more brainstorming problems, would sequence be a factor in productivity levels? Another direction for research would be to study more break tasks. We should look at ways to increase motivational levels of participants and examine if this has an effect on productivity. We should explore the similarities of those tasks that increase productivity levels. Evidence from this study and previous ones suggest that refocusing on the brainstorming task during the break helps increase productivity. What tasks would be beneficial to keeping a group in focus on the brainstorming problem? Would breaks be necessary if a group constantly refocuses on the brainstorming problem?

APPENDIX A

STATEMENT OF CONSENT FOR PARTICIPATION IN THE EXPERIMENT

Statement of Consent for Participation in Botticelli

This experiment involves doing a brainstorming task and filling out a questionnaire. I understand that after the experimental session is concluded, I will be given a more detailed explanation of the procedures and specific purposes of the experiment, and I will have an opportunity to ask questions regarding it.

I recognize that no discomfort of any sort is anticipated during or as a result of this experiment. The benefits of participating in research (both to myself and the psychology department) have been outlined during my psychology class. The data in this study will be used for scientific purposes only. Furthermore, I understand that records of my participation will be held strictly confidential.

My signature below indicates my consent to participate in this experiment.

Name

Date

Instructor's name, Time of Class

Student ID #
APPENDIX B

RULES FOR BRAINSTORMING AND THE THUMBS PROBLEM

RULES FOR BRAINSTORMING

- Rule 1:Criticism is ruled out. Adverse judgment of ideas must be withheld.Don't criticize any ideas that come to mind.
- Rule 2: Freewheeling is welcome. The wilder the idea, the better. It is easier to tame down than to think up. Don't be afraid to say anything that comes to mind, the farther out the idea, the better.
- Rule 3: Quantity and quality are wanted. Come up with as many good, creative ideas as you can.
- Rule 4: Combination and improvement are sought. You should be willing to join or change suggestions you have made into still better ideas. Don't be afraid to combine and improve on them.

THE THUMBS PROBLEM

The problem we want you to work on is called the Thumbs problem. We do not think this is likely to happen, but imagine for a moment what would happen if everyone after 1997 had an extra thumb on each hand. This extra thumb will be built just as the present one but located on the other side of the hand. It faces inward, so that it can press against the fingers just as the regular thumb does now. Here is the question: What practical benefits or difficulties will arise when people start having this extra thumb? APPENDIX C

QUESTIONNAIRES

QUESTIONNAIRES FOR BOTTICELLI

Questionnaire - No Break-Oral Condition

We would like you to rate various aspects of your experience while you were doing the brainstorming task. Take a few minutes to reflect and answer the following questions. For most of these questions, we have provided nine point scales for you to indicate your feelings. The more extreme your feelings in one direction or the other, the more you should mark a number in that direction.

(1) Have you ever participated in an experiment like this before? Yes No
 If you answered Yes: Was the task the same as the present one? Yes No
 (2) How would you rate the number of ideas you were able to generate during the entire brainstorming session? I was able to generate:

very few i	deas		S	ome ideas			very many ideas				
1	2	3	4	5	6	7	8	9			

(3) How do you feel after finishing the brainstorming session? I feel:

very tired	same	as before	more en	more energetic				
1	2	3	4	5	6	7	8	9

(4) How did you like the task of brainstorming orally?

disliked strong	gly		ne	utral	strong	strongly liked		
1	2	3	4	5	6	7	8	9

(5) How do you think a break would affect your productivity? With a break, I think my productivity would:

increase			stay t	stay the same					
1	2	3	4	5	6	7	8	9	

Questionnaire - Break Written Brainstorming Condition

We would like you to rate various aspects of your experience while you were doing the brainstorming task. Take a few minutes to reflect and answer the following questions. For most of these questions, we have provided nine point scales for you to indicate your feelings. The more extreme your feelings in one direction or the other, the more you should mark a number in that direction.

(1) Have you ever participated in an experiment like this before? Yes No
If you answered Yes: Was the task the same as the present one? Yes No
(2) How would you rate the number of ideas you were able to generate during the entire brainstorming session? I was able to generate:

very few	ideas		S	ome idea	S	very many ideas			
1	2	3	4	5	6	7	8	9	

(3) How would you rate the number of ideas you were able to generate during the first session? I was able to generate:

very few i	deas		S	ome idea	S		very many ideas				
1	2	3	4	5	6	7	8	9			

(4) How would you rate the number of ideas you were able to generate during the second session? I was able to generate:

very few i	ery few ideas			ome idea	S		very many ideas				
1	2	3	4	5	6	7	8	9			

(5) Rate your performance during the second session of brainstorming. Comparing it to the first session, during the second session I did:

W	/orse				same			I	better
	1	2	3	4	5	6	7	8	9
(6)	Rate how	v well you	ı liked the	task of	writing you	ır ideas fo	r 3 minute	s:	
di	sliked			r	neutral			1	iked
	1	2	3	4	5	6	7	8	9
(7)	Rate how	the task	of writing	g your ide	eas may ha	ve affecte	d your pro	ductivity d	luring the
seco	ond sessio	on. Becau	use of the	task, du	ring the sec	ond session	on I was a	ble to prod	uce:
moi	re ideas			sar	ne amount			fewer	ideas
	1	2	3	4	5	6	7	8	9
(8)]	Rate you	r perform	ance durii	ng the se	cond sessio	on of brain	istorming.	Comparir	ng it to the
first	t session,	during th	e second :	session I	did:				
W	orse			:	same			t	oetter
	1	2	3	4	5	6	7	8	9
(9) I	How do y	rou feel at	fter finish	ing the b	orainstormi	ng session	? I feel:		
very	y tired			same	e as before			more en	ergetic
	1	2	3	4	5	6	7	8	9

Questionnaire - Break Reinstruction Condition

We would like you to rate various aspects of your experience while you were doing the brainstorming task. Take a few minutes to reflect and answer the following questions. For most of these questions, we have provided nine point scales for you to indicate your feelings. The more extreme your feelings in one direction or the other, the more you should mark a number in that direction.

(1) Have you ever participated in an experiment like this before? Yes No
If you answered Yes: Was the task the same as the present one? Yes No
(2) How would you rate the number of ideas you were able to generate during the entire brainstorming session? I was able to generate:

very few	ideas		S	ome idea	S		very many ideas			
1	2	3	4	5	6	7	8	9		

(3) How would you rate the number of ideas you were able to generate during the first session? I was able to generate:

very few i	deas		S	ome idea	S		very many ideas				
1	2	3	4	5	6	7	8	9			

(4) How would you rate the number of ideas you were able to generate during the second session? I was able to generate:

very few ideas			S	ome idea	s		very many ideas				
1	2	3	4	5	6	7	8	9			

(5) Rate your performance during the second session of brainstorming. Comparing it to the first session, during the second session I did:

worse				same				better
1	2	3	4	5	6	7	8	9
(6) Rate ho	w well y	you liked	the task of	of rereadin	ng the instr	uctions a	nd the task	•
disliked				neutral				liked
1	2	3	4	5	6	7	8	9
(7) Rate hor	w the ta	sk of rere	ading the	e instructio	ons may ha	ve affecte	ed your pro	oductivity
during the s	second s	ession. E	Because o	of the task,	, during the	e second s	session I w	as able to
produce:								
more ideas				same amo	ount		fev	ver ideas
1	2	3	4	5	6	7	8	9
(8) To what	extent	were you	thinking	of the Th	umbs prob	lem while	e rereading	the
instructions	? I was	thinking	of the Th	umbs pro	blem:			
not at all				sometime	S			often
1	2	3	4	5	6	7	8	9
(9) How do	you fee	l after fin	ishing th	e brainsto	rming sess	ion? I fee	el:	
very tired		same as before more energet						
1	2	3	4	5	6	7	8	9

Questionnaire – Break Different Task Condition

We would like you to rate various aspects of your experience while you were doing the brainstorming task. Take a few minutes to reflect and answer the following questions. For most of these questions, we have provided nine point scales for you to indicate your feelings. The more extreme your feelings in one direction or the other, the more you should mark a number in that direction.

(1) Have you ever participated in an experiment like this before? Yes No
If you answered Yes: Was the task the same as the present one? Yes No
(2) How would you rate the number of ideas you were able to generate during the entire brainstorming session? I was able to generate:

very few ideas			S	ome idea	S		very many id			
1	2	3	4	5	6	7	8	9		

(3) How would you rate the number of ideas you were able to generate during the first session? I was able to generate:

very few ideas			S	ome idea	S		very	y many ideas	i
1	2	3	4	5	6	7	8	9	

(4) How would you rate the number of ideas you were able to generate during the second session? I was able to generate:

very few ideas			S	ome idea	S		very	/ many ide	as
1	2	3	4	5	6	7	8	9	

(5) Rate your performance during the second session of brainstorming. Comparing it to the first session, during the second session I did:

worse					better				
1	2	3	4	5	6	7	8	9	
(6) Rate he	ow well y	you liked	the task c	of reciting	; an object	for each l	etter of the	alphabet:	
disliked				neutral				liked	
1	2	3	4	5	6	7	8	9	
(7) Rate ho	ow the ta	sk of reci	iting an ol	oject for e	ach letter	of the alpł	abet may	have affecte	ed
your produ	ictivity d	vity during the second session. Because of the task, during the second session I							
was able to) produce:								
more ideas	;		:	same amo	ount		fev	ver ideas	
1	2	3	4	5	6	7	8	9	
(8) To wha	it extent	were you	thinking	of the Th	umbs prob	lem while	reciting a	n object for	
each letter	of the al	phabet?	I was thin	king of th	e Thumbs	problem:			
not at all			S	sometime	s			often	
1	2	3	4	5	6	7	8	9	
(9) How do	o you fee	l after fir	nishing the	e brainsto	rming sess	ion? I fee	el:		
very tired		same as before more energetic							
1	2	3	4	5	6	7	8	9	

Questionnaire - Break No Task Condition

We would like you to rate various aspects of your experience while you were doing the brainstorming task. Take a few minutes to reflect and answer the following questions. For most of these questions, we have provided nine point scales for you to indicate your feelings. The more extreme your feelings in one direction or the other, the more you should mark a number in that direction.

(1) Have you ever participated in an experiment like this before? Yes No
If you answered Yes: Was the task the same as the present one? Yes No
(2) How would you rate the number of ideas you were able to generate during the entire brainstorming session? I was able to generate:

very few ideas			5	some idea	S		very	y many ideas	i
1	2	3	4	5	6	7	8	9	

(3) How would you rate the number of ideas you were able to generate during the first session? I was able to generate:

very few ideas			S	ome idea	S		very	y many ideas
1	2	3	4	5	6	7	8	9

(4) How would you rate the number of ideas you were able to generate during the second session? I was able to generate:

very few ideas			S	ome idea	S		very	y many ide	as
1	2	3	4	5	6	7	8	9	

(5) Rate your performance during the second session of brainstorming. Comparing it to the first session, during the second session I did:

worse				same				better
1	2	3	4	5	6	7	8	9
(6) Rate ho	w well	you liked	doing no	thing dur	ing the bre	ak:		
disliked				neutral				liked
1	2	3	4	5	6	7	8	9
(7) Rate ho	w the b	reak may	have affe	cted your	productiv	ity during	the secon	d session.
Because of	the brea	ak, during	the secon	nd sessio	n I was abl	e to produ	ce:	
more ideas			:	same amo	ount		fe	wer ideas
1	2	3	4	5	6	7	8	9
(8) To wha	t extent	were you	thinking	of the Th	umbs prob	lem while	taking a l	break? I was
thinking of	the Thu	ımbs prob	lem:					
not at all			5	sometime	S			often
I	2	3	4	5	6	7	8	9
(9) How do	o you fee	el after fin	ishing the	e brainsto	rming sess	ion? I fee	l:	
very tired			sa	me as bef	ore		more	e energetic
1	2	3	4	5	6	7	8	9

APPENDIX D

ABBREVIATIONS

ABBREVIATIONS

BDT	Break Different Task, participants had to come up with as many objects for each letter of the alphabet
BNT	Break No Task, participants were told to do and think about nothing
BRI	Break Reinstruction Task, participants were read the rules and the task for brainstorming again
BWB	Break Written Brainstorming, participants had a break but were asked to continue brainstorming about the problem in written form rather than oral
DIF5	The difference between the last 5 minutes before the break (T52) and the first 5 minutes after (T53)
NBO	No Break Oral, participants brainstormed for the entire session
RELTOT	Twenty-five percent of the total number of ideas (without repeats) for the reliability test
T51	The number of ideas during the first five minutes of brainstorming session (without repeats)
T52	The number of ideas during the second five minutes of brainstorming session (without repeats)
T53	The number of ideas during the third five minutes of brainstorming session after the two-minute break (without repeats)
T54	The number of ideas during the fourth five minutes of brainstorming session after the two-minute break (without repeats)
T110	The number of ideas during the first ten minutes of brainstorming session (without repeats)
T210	The number of ideas during the second ten minutes of brainstorming session after the two-minute break (without repeats)
T12	The number of ideas during the second ten minutes of brainstorming session including the two-minute break (without repeats)
тот	The number of ideas for the 22 minutes of brainstorming without repeats.

APPENDIX E

General Linear Models Procedure Class Level Information

Class Levels Values XP 2 0 1 CON 5 BDT BNT BRI NBO BWB Number of observations in data set = 106

Dependent Varia	ible: T	ТОТ				
Source	DF	Sum of S	Squares	Mean Square	F Value	Pr > F
Model	9	25997.77	725566	2888.6419173	0 1.38	0.2087
Error	96	201196.82	651793	2095.8002762	3	
Corrected Total	105	227194.60	377359			
R-Square		C.V.	Root MSE	TOT Mea	n	
0.114430	58.8	9163 4:	5.77991127	77.7358490	6	
Source	DF	Туре	I SS	Mean Square	F Value	Pr > F
XP	1	8782.0136	0965 8	782.01360965	4.19	0.0434
CON	4	5495.39364	1509 1 .	373.84841127	0.66	0.6244
XP*CON	4	11720.37000	0092 29	930.09250023	1.40	0.2405
Source	DF	Type	III SS	Mean Square	F Value	Pr > F
XP	1	9183.874	74158	9183.87474158	4.38	0.0390
CON	4	3844.446	60141	961.11165035	0.46	0.7659
XP*CON	4	11720.370	00092 2	2930.09250023	1.40	0.2405

Dependent Varia	able: T	51					
Source	DF	Sum	of Squares	Me	an Square	F Value	Pr > F
Model	9	238	9.94432339	265.	.54936927	1.50	0.1586
Error	96	16984	4.54624265	176.	92235669		
Corrected Total	105	19374	4.49056604				
R-Square	(C.V.	Root MS	E '	T51 Mean		
0.123355	46.65	549	13.301216	36 28.	50943396		
Source	DF	ĩ	ype I SS	Mean	Square F	Value	Pr > F
XP	1	410.2	7417260	410.27	417260	2.32	0.1311
CON	4	867.13	3937349	216.784	184337	1.23	0.3052
XP*CON	4	1112.5	3077731	278.132	269433	1.57	0.1880
Source	DF	Ту	pe III SS	Mean	I Square F	Value	Pr > F
XP	1	472.0	4872699	472.04	872699	2.67	0.1057
CON	4	556.4	1264251	139.10	316063	0.79	0.5369
XP*CON	4	1112.5	3077731	278.13	269433	1.57	0.1880
Dependent Varia	ıble: Tʻ	52					
Source	DF	Sum	of Squares	Me	an Square	F Value	Pr > F
Model	9	13	98 46348539	14	5.3848317	$\frac{1}{1}$	89 0 5405
Error	96	168	31 15915612	17	15 3245745	4	0.5105
Corrected Total	105	182	29.62264151	.,	5.52 157 15	•	
R-Square	C	2.V.	Root MS	E 1	Γ52 Mean		
0.076714	72.57	7228	13.241018	64 18	8.24528302	2	
Source	DF	Т	ype I SS	Mean	Square F	Value I	Pr > F
XP	1	632.	.30606592	632.3	30606592	3.61	0.0606
CON	4	339.	47008323	84.8	6752081	0.48	0.7474
XP*CON	4	426.	68733624	106.6	7183406	0.61	0.6575
Source	DF	Ту	pe III SS	Mean	Square F	Value	Pr > F
ХР	1	701	.97358394	701.	97358394	4.00	0.0482
CON	4	320	.88978068	80.	.22244517	0.46	0.7667
XP*CON	4	426	.68733624	106.	67183406	0.61	0.6575

Dependent Varia	able: T	53					
Source	DF	Su	m of Squares	Μ	lean Square	F Valu	1e Pr > F
Model	9	32	53.20295375	36	1.46699486	2.0	0.0399
Error	96	167	81.13666889	174	4.80350697		
Corrected Total	105	200	34.33962264				
R-Square		C.V.	Root M	SE	T53 Mean		
0.162381	74.7	0473	13.221327	73 1	7.69811321		
Source	DF		Type I SS	Mea	n Square F	Value	Pr > F
XP	1	922.	77896690	922.77	896690	5.28	0.0238
CON	4	1738.	50712990	434.62	678248	2.49	0.0485
XP*CON	4	591.	91685695	147.97	921424	0.85	0.4991
Source	DF	Т	ype III SS	Mea	in Square F	Value	Pr > F
ХР	1	701	.43339476	701.4	3339476	4.01	0.0480
CON	4	1300.	23479640	325.0	5869910	1.86	0.1238
XP*CON	4	591.	.91685695	147.9	7921424	0.85	0.4991
Dependent Varia	ıble: T	54					
Source	DF	Su	m of Squares	Μ	lean Square	F Valu	e Pr > F
Model	9	168	85.73557721	187	7.30395302	1.4	0 0.1989
Error	96	1284	42.34932845	133	3.77447217		
Corrected Total	105	1452	28.08490566				
R-Square	(C.V.	Root M	SE	T54 Mean		
0.116033	101.9	9124	11.566091	48 1	1.34905660		
Source	DF		Type I SS	Mea	n Square F	Value	Pr > F
XP	1	388.	41860329	388.4	1860329	2.90	0.0916
CON	4	335.6	58177407	83.9	2044352	0.63	0.6442
XP*CON	4	961.6	53519985	240.4	0879996	1.80	0.1357
Source	DF	Т	ype III SS	Mea	n Square F	Value	Pr > F
XP	1	367	.73632147	367.7	3632147	2.75	0.1006
CON	4	139.	97336176	34.9	9334044	0.26	0.9019
XP*CON	4	961.	63519985	240.4	0879996	1.80	0.1357

Dependent Varia	ble: T	110					
Source	DF	Sun	n of Squares		Mean Squar	re F Valu	e Pr > F
Model	9	689	5.23671216		766.1374124	6 1.2	8 0.2561
Error	96	5732	8.38592935	:	597.1706867	6	
Corrected Total	105	6422	3.62264151				
R-Square		C.V.	Root M	ISE	T110 Mea	n	
0.107363	52.20	5655	24.43707	607	46.754716	98	
Source	DF	-	Гуре I SS	Μ	lean Square	F Value	Pr > F
XP	1	2061.2	24377084	2061	1.24377084	3.45	0.0663
CON	4	2012.1	8038996	503	.04509749	0.84	0.5017
XP*CON	4	2821.8	1255137	705	.45313784	1.18	0.3240
Source	DF	T	ype III SS	Ν	fean Square	F Value	Pr > F
XP	1	2325.	30982791	232	5.30982791	3.89	0.0513
CON	4	1496.0	07339113	374	4.01834778	0.63	0.6449
XP*CON	4	2821.8	81255137	70:	5.45313784	1.18	0.3240
Dependent Varia	ble: T	210					
Source	DF	Sun	n of Squares		Mean Squar	e FValu	e $Pr > F$
Model	9	860	9.13651747	Ģ	956.5707241	6 1.7	3 0.0922
Error	96	5303	7.62763348	4	552.4752878	5	
Corrected Total	105	6164	6.76415094				
R-Square	(C.V.	Root M	SE	T210 Mea	n	
0.139653	80.9 1	939	23.504792	.87	29.0471698	1	
Source	DF	1	Гуре I SS	М	ean Square	F Value	Pr > F
XP	1	2508.5	6888683	2508	8.56888683	4.54	0.0357
CON	4	3318.9	5659124	829	.73914781	1.50	0.2077
XP*CON	4	2781.6	1103940	695	.40275985	1.26	0.2916
Source	DF	Ty	pe III SS	Ν	Iean Square	F Value	Pr > F
XP	1	2084.	93058639	208	4.93058639	3.77	0.0550
CON	4	2004.5	52923015	501	1.13230754	0.91	0.4631
XP*CON	4	2781.6	51103940	695	5.40275985	1.26	0.2916

Dependent Varia	able: T	12						
Source	DF	Su	m of Squares		Mean Squa	are	F Valu	e Pr > F
Model	9	77	34.79059832	8	59.421177	59	1.4	6 0.1758
Error	96	566	85.17166583	5	90.470538	19		
Corrected Total	105	644	19.96226415					
R-Square		C.V.	Root M	SE	T12 Mea	an		
0.120068	78.43	354	24.299599	955	30.981132	08		
Source	DF		Type I SS	Me	ean Square	F	Value	Pr > F
XP	1	2333.	99869402	2333.	.99869402		3.95	0.0496
CON	4	2173.	12825447	543.	28206362		0.92	0.4556
XP*CON	4	3227.	66364982	806.	91591246		1.37	0.2513
Source	DF	1	VDE III SS	М	ean Square	F	Value	Pr > F
XP	1	2266	.81383577	2266	.81383577		3.84	0.0530
CON	4	1809	76073902	452	.44018476		0.77	0.5498
XP*CON	4	3227	.66364982	806	.91591246		1.37	0.2513
Dependent Varia	ıble: D	IF10						
Source	DF	Su	m of Squares		Mean Squa	re	F Valu	e Pr > F
Model	9	36	37.67512804	4	04.1861253	34	1.4	7 0.1704
Error	96	264	10.25883422	2	75.1068628	36		
Corrected Total	105	3004	47.93396226					
R-Square	(C.V.	Root M	SE	DIF10 Me	ean		
0.121062	93.6	6823	16.5863450	58	17.707547	17		
Source	DF		Type I SS	Me	an Square	F۷	Value	Pr > F
XP	1	21.	94634842	21.	94634842		0.08	0.7782
CON	4	3304.1	79907651	826.	19976913		3.00	0.0221
XP*CON	4	310.9	92970311	77.	73242578		0.28	0.8886
Source	DF	Т	ype III SS	M	ean Square	F	Value	Pr > F
XP	1	6	.55578297	6	.55578297		0.02	0.8776
CON	4	3090.	85538139	772.	71384535		2.81	0.0297
XP*CON	4	310.	92970311	77.	73242578		0.28	0.8886

Dependent Varia	ıble: D	IF5							
Source	DF	Su	im of Squares		Mean Squar	re	F Valu	ıe	Pr > F
Model	9	24	31.52846025		270.1698289	2	2.4	2	0.0161
Error	96	107	24.73569070		111.7159967	8			
Corrected Total	105	131	56.26415094						
R-Square	(C.V.	Root M	SE	DIF5 Mea	m			
0.184819	1931	.682	10.569578	84	0.5471698	81			
Source	DF		Type I SS		Mean Square	F	Value	Pr	· > F
XP	1	27	.36943327		27.36943327		0.24	0.6	218
CON	4	2222	.78664063	5	55.69666016		4.97	0.0	011
XP*CON	4	181	.37238634		45.34309658		0.41	0.8	040
Source	DF		Type III SS		Mean Square	F	Value	P	r > F
XP	1	(0.00010396		0.00010396		0.00	0.	.9992
CON	4	1983	3.13421793		495.78355448		4.44	0.	0025
XP*CON	4	181	.37238634		45.34309658		0.41	0.	8040

General Linear Models Procedure Duncan's Multiple Range Test for variable: TOT NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 96 MSE = 2095.8WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 51.79245

Number of Means 2 Critical Range 17.86 Means with the same letter are not significantly different.

 Duncan Grouping
 Mean
 N XP

 A
 88.333
 45 1

 B
 69.918
 61 0

Duncan's Multiple Range Test for variable: T53 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 96 MSE= 174.8035 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 51.79245

Number of Means 2 Critical Range 5.157 Means with the same letter are not significantly different.

 Duncan Grouping
 Mean
 N XP

 A
 21.133
 45 1

 B
 15.164
 61 0

Duncan's Multiple Range Test for variable: T210 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 96 MSE= 552.4753 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 51.79245

Number of Means 2 Critical Range 9.168 Means with the same letter are not significantly different.

Duncan Grouping	Mean	N XP
Α	34.711	45 1
В	24.869	61 0

Duncan's Multiple Range Test for variable: T12 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 96 MSE= 590.4705 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 51.79245

Number of Means 2 Critical Range 9.478 Means with the same letter are not significantly different.

 Duncan Grouping
 Mean
 N
 XP

 A
 36.444
 45
 1

 B
 26.951
 61
 0

Duncan's Multiple Range Test for variable: T53 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 96 MSE = 174.8035 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 21.13701

Number of Means 2 3 4 5 Critical Range 8.073 8.495 8.776 8.981 Means with the same letter are not significantly different.

Duncar	1 Groupin	ig Mean	N CON
	A	24.000	21 BRI
В	Α	19.864	22 BWB
В	A	18.250	20 BNT
В	Α	15.450	20 BDT
В		11.348	23 NBO

Duncan's Multiple Range Test for variable: T210

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha = 0.05 df = 96 MSE = 552.4753 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 21.13701

Number of Means 2 3 4 5 Critical Range 14.35 15.10 15.60 15.97 Means with the same letter are not significantly different.

Duncan	Grouping	g Mean	Ν	CON
	Α	36.667	21	BRI
В	A	32.591	22	BWB
В	Α	31.300	20	BNT
В	Α	25.150	20	BDT
В		20.130	23	NBO

Duncan's Multiple Range Test for variable: DIF10 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 96 MSE = 275.1069 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 21.13701

Number of Means 2 3 4 5 Critical Range 10.13 10.66 11.01 11.27 Means with the same letter are not significantly different.

Dunca	an Grouj	ping Mean	N CON
	Α	23.870	23 NBO
	Α	23.450	20 BNT
В	Α	18.600	20 BDT
В		12.000	22 BWB
В		10.619	21 BRI

Duncan's Multiple Range Test for variable: DIF5 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 96 MSE = 111.716 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 21.13701

Number of Means 2 3 4 5 Critical Range 6.454 6.791 7.016 7.180 Means with the same letter are not significantly different.

Duncan	Grouping	Mean	N CON
	A	0.937	23 NDU
В	Α	2.800	20 BNT
B	Α	1.900	20 BDT
В	C	-3.545	22 BWB
	С	-5.619	21 BRI

Level	of Level	of		готтот	7	51
XP	CON	Ν	Mean	SD	Mean	SD
0	BDT	9	54.44444	38.3930694	21.4444444	9.9888827
0	BNT	13	88.153846	49.7625129	34.4615385	14.1398691
0	BRI	10	75.900000	39.3459019	27.1000000	10.9691487
0	NBO	16	53.000000	33.6729367	21.2500000	10.6614571
0	BWB	13	78.615385	41.1350185	29.5384615	12.7842050
1	BDT	11	80.727273	47.9522490	30.4545455	13.2692399
1	BNT	7	82.142857	38.3076519	32.2857143	16.9481000
1	BRI	11	91.272727	49.7897397	30.5454545	14.3412945
1	NBO	7	110.428571	50.8030745	35.8571429	15.8264396
1	BWB	9	81.666667	67.4240313	26.4444444	15.7885331
Level	of Level of	of	T	52	T	53
XP	CON	Ν	Mean	SD	Mean	SD
0	BDT	9	13.6666667	12.7964839	11.2222222	9.6537270
0	BNT	13	21.3076923	13.5301183	17.7692308	11.8894480
0	BRI	10	15.2000000	7.6710133	23.5000000	16.5411944
0	NBO	16	14.6875000	11.6431310	7.1250000	8.3336667
0	BWB	13	15.2307692	11.5625390	18.7692308	12.7223808
1	BDT	11	20.3636364	14.6100837	18.9090909	12.7707051
1	BNT	7	20.5714286	11.573 7799	19.1428571	14.5192811
1	BRI	11	21.2727273	14.8532213	24.4545455	15.6356237
1	NBO	7	26.5714286	9.8802352	21.0000000	15.2861593
1	BWB	9	17.8888889	20.6968865	21.4444444	16.3944435
Level	of Level of	of	T5	54		Г110
XP	CON	Ν	Mean	SD	Mean	SD
0	BDT	9	8.1111111	10.0180393	35.1111111	21.9228445
0	BNT	13	4.6153846	14.5289278	55.7692308	25.9587938
0	BRI	10	10.1000000	10.7749710	42.3000000	15.6634749
0	NBO	16	4.2500000	5.3478968	35.9375000	20.8085519
0	BWB	13	12.3076923	8.4988687	44.7692308	23.1774094
1	BDT	11	11.0000000	12.9151074	50.8181818	26.1985426
1	BNT	7	10.1428571	7.2210011	52.8571429	24.2585282
1	BRI	11	15.0000000	13.0766968	51.8181818	26.0876146
1	NBO	7	19.1428571	13.4465432	62.4285714	22.9627027
1	BWB	9	13.3333333	17.2843860	44.3333333	35.1496799

General Linear Models Procedure

Level of	Level of		T2	T210		12
XP	CON	Ν	Mean	SD	Mean	SD
0	BDT	9	19.3333333	18.9670767	19.3333333	18.9670767
0	BNT	13	32.3846154	25.6500112	32.3846154	25.6500112
0	BRI	10	33.6000000	26.8667494	33.6000000	26.8667494
0	NBO	16	11.3750000	12.0492047	17.0625000	15.8302190
0	BWB	13	31.0769231	20.5647819	33.8461538	20.3668282
1	BDT	11	29.9090909	24.8574116	29.9090909	24.8574116
1	BNT	7	29.2857143	20.7421815	29.2857143	20.7421815
1	BRI	11	39.4545455	26.7968791	39.4545455	26.7968791
1	NBO	7	40.1428571	27.1626494	48.0000000	32.2386931
1	BWB	9	34.7777778	31.9130764	37.3333333	32.5998466
T	T and a f		זות	10	וח	
Level of	Level of		DIF	10	D]	[F5
Level of XP	Level of CON	N	DIF Mean	510 SD	D Mean	IF5 SD
Level of XP 0	Level of CON BDT	N 9	DIF Mean 15.7777778	SD 14.3768719	D Mean 2.44444444	IF5 SD 5.7903176
Level of XP 0 0	Level of CON BDT BNT	N 9 13	DIF Mean 15.7777778 23.3846154	⁵ 10 SD 14.3768719 13.6841664	Dl Mean 2.44444444 3.53846154	IF5 SD 5.7903176 6.7776026
Level of XP 0 0 0	Level of CON BDT BNT BRI	N 9 13 10	DIF Mean 15.7777778 23.3846154 8.7000000	SD 14.3768719 13.6841664 19.6528200	D Mean 2.44444444 3.53846154 -8.30000000	IF5 SD 5.7903176 6.7776026 16.3710449
Level of XP 0 0 0 0 0	Level of CON BDT BNT BRI NBO	N 9 13 10 16	DIF Mean 15.7777778 23.3846154 8.7000000 24.5625000	SD 14.3768719 13.6841664 19.6528200 16.1945207	Dl Mean 2.44444444 3.53846154 -8.30000000 7.56250000	IF5 SD 5.7903176 6.7776026 16.3710449 9.2445930
Level of XP 0 0 0 0 0 0 0	Level of CON BDT BNT BRI NBO BWB	N 9 13 10 16 13	DIF Mean 15.7777778 23.3846154 8.7000000 24.5625000 13.6923077	SD 14.3768719 13.6841664 19.6528200 16.1945207 14.7839136	DI Mean 2.4444444 3.53846154 -8.30000000 7.56250000 -3.53846154	IF5 SD 5.7903176 6.7776026 16.3710449 9.2445930 10.4850321
Level of XP 0 0 0 0 0 0 1	Level of CON BDT BNT BRI NBO BWB BDT	N 9 13 10 16 13 11	DIF Mean 15.7777778 23.3846154 8.7000000 24.5625000 13.6923077 20.9090909	SD 14.3768719 13.6841664 19.6528200 16.1945207 14.7839136 17.5809815	DI Mean 2.4444444 3.53846154 -8.3000000 7.56250000 -3.53846154 1.45454545	IF5 SD 5.7903176 6.7776026 16.3710449 9.2445930 10.4850321 10.4915550
Level of XP 0 0 0 0 0 0 1 1 1	Level of CON BDT BNT BRI NBO BWB BDT BNT	N 9 13 10 16 13 11 7	DIF Mean 15.7777778 23.3846154 8.7000000 24.5625000 13.6923077 20.9090909 23.5714286	SD 14.3768719 13.6841664 19.6528200 16.1945207 14.7839136 17.5809815 23.8736755	Dl Mean 2.4444444 3.53846154 -8.30000000 7.56250000 -3.53846154 1.45454545 1.42857143	IF5 SD 5.7903176 6.7776026 16.3710449 9.2445930 10.4850321 10.4915550 6.5791880
Level of XP 0 0 0 0 0 1 1 1 1 1	Level of CON BDT BNT BRI NBO BWB BDT BNT BRI	N 9 13 10 16 13 11 7 11	DIF Mean 15.7777778 23.3846154 8.7000000 24.5625000 13.6923077 20.9090909 23.5714286 12.3636364	SD 14.3768719 13.6841664 19.6528200 16.1945207 14.7839136 17.5809815 23.8736755 17.8396902	DI Mean 2.4444444 3.53846154 -8.3000000 7.56250000 -3.53846154 1.45454545 1.42857143 -3.18181818	IF5 SD 5.7903176 6.7776026 16.3710449 9.2445930 10.4850321 10.4915550 6.5791880 13.7099831
Level of XP 0 0 0 0 0 1 1 1 1 1	Level of CON BDT BNT BRI NBO BWB BDT BNT BRI NBO	N 9 13 10 16 13 11 7 11 7	DIF Mean 15.7777778 23.3846154 8.7000000 24.5625000 13.6923077 20.9090909 23.5714286 12.3636364 22.2857143	SD 14.3768719 13.6841664 19.6528200 16.1945207 14.7839136 17.5809815 23.8736755 17.8396902 20.1056732	DI Mean 2.4444444 3.53846154 -8.3000000 7.56250000 -3.53846154 1.45454545 1.42857143 -3.18181818 5.57142857	IF5 SD 5.7903176 6.7776026 16.3710449 9.2445930 10.4850321 10.4915550 6.5791880 13.7099831 12.0810753

Level o	of	TOT	[T51		T52	9
XP	Ν	Mean	SD	Mean	SD	Mean	SD
0	61	69.9180328	41.8633870	26.8196721	12.6220814	16.1475410	11.6402120
1	45	88.3333333	50.7354995	30.8000000	14.6203470	21.0888889	14.6688015
Level o	of	T53-		T54-		T11	0
XP	N	Mean	SD	Mean	SD	Mean	SD
0	61	15.1639344	12.9192109	9.7049180	10.4711417	42.9672131	22.5846314
1	45	21.1333333	14.3789619	13.5777778	13.1087911	51.8888889	26.7812878
				-	-10	-	
LEVEL	. OF	ΓΤ	210		12		JIF 10
LEVEL XP	L OF N	Mean	210 SD	Mean	SD	I Mean	SD
LEVEL XP 0	. OF N 61	7T Mean 24.8688525	210 SD 22.2519478	Mean 26.9508197	SD 22.1874035	Mean 18.0983607	SD 16.4059998
LEVEI XP 0 1	. OF N 61 45	T Mean 24.8688525 34.7111111	210 SD 22.2519478 25.8620661	Mean 26.9508197 36.4444444	SD 22.1874035 27.1983920	<u> </u> Mean 18.0983607 17.177778	SD 16.4059998 17.7588504
LEVEI XP 0 1 Level o	2 OF N 61 45 f	Mean 24.8688525 34.7111111	210 SD 22.2519478 25.8620661 DIF5	 Mean 26.9508197 36.4444444	SD 22.1874035 27.1983920	<u> </u> Mean 18.0983607 17.177778	SD 16.4059998 17.7588504
LEVEL XP 0 1 Level o XP	2 OF N 61 45 f N	Mean 24.8688525 34.7111111 [Mean	210 SD 22.2519478 25.8620661 DIF5 SD	 Mean 26.9508197 36.444444	SD 22.1874035 27.1983920	<u> </u> Mean 18.0983607 17.177778	SD 16.4059998 17.7588504
LEVEL XP 0 1 Level o XP 0	2 OF	Mean 24.8688525 34.7111111 I Mean 0.98360656	210 SD 22.2519478 25.8620661 DIF5 SD 11.370270	 Mean 26.9508197 36.4444444	SD 22.1874035 27.1983920	<u> </u> Mean 18.0983607 17.177778	SD 16.4059998 17.7588504
LEVEI XP 0 1 Level o XP 0 1	2 OF N 61 45 f N 61 45	Mean 24.8688525 34.7111111 I Mean 0.98360656 -0.04444444	210 SD 22.2519478 25.8620661 DIF5 SD 11.370270 11.049384	 Mean 26.9508197 36.444444 9	SD 22.1874035 27.1983920	<u> </u> Mean 18.0983607 17.177778	SD 16.4059998 17.7588504

Level o	of	TO	Г	T51		T52	2
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	20	68.9000000	44.8422968	26.400000) 12.4832519	17.3500000	13.8915915
BNT	20	86.0500000	45.1226107	33.700000) 14.7687437	21.0500000	12.5717938
BRI	21	83.9523810	44.6995259	28.9047619	12.6526865	18.3809524	12.1015544
NBO	23	70.4782609	46.9785924	25.6956522	13.8938665	18.3043478	12.2601898
BWB	22	79.8636364	51.9718747	28.2727273	13.8122851	16.3181818	15.5360912
Level o	of	T53-		T54	~ 	T1	10
CON	N	Mean	SD	Mean	SD	Mean	SD
BDT	20	15.4500000	11.8520485	9.700000) 11.4987413	43.7500000	25.0575653
BNT	20	18.2500000	12.5021051	13.0500000) 12.4328724	54.7500000	24.7681353
BRI	21	24.000000	15.6716304	12.6666667	12.0013888	47.2857143	21.7810534
NBO	23	11.3478261	12.3972456	8.7826087	10.8584133	44.000000	24.3795742
BWB	22	19.8636364	14.0247925	12.7272727	12.4639741	44.5909091	27.8869471
Level o	f	T21	0	T12		DIF1	0
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	20	25.1500000	22.4904073	25.1500000	22.4904073	18.6000000	16.0177533
BNT	20	31.3000000	23.5307190	31.3000000	23.5307190	23.4500000	17.2702208
BRI	21	36.6666667	26.3217274	36.6666667	26.3217274	10.6190476	18.3425085
NBO	23	20.1304348	21.9861617	26.4782609	25.8102685	23.8695652	17.0355360
BWB	22	32.5909091	25.1616850	35.2727273 :	25.3962536	12.0000000 1	2.0948631
Level o	f	[DIF5				
CON	N	Mean	SD				
BDT	20	1.900000	0 8.50325	502			
BNT	20	2.8000000	0 6.61417	'93			
BRI	21	-5.6190476	2 14.88111	.62			
NBO	23	6.9565217	4 9.94749	06			
BWB	22	-3.5454545	5 9. 989 17	16			

60

APPENDIX F

ANOVA ON EXPERIENCED PARTICIPANTS ONLY

.

EXPERIENCED PARTICIPANTS ONLY

General Linear Models Procedure Class Level Information

Class Levels Values CON 5 BDT BNT BRI NBO BWB Number of observations in data set = 45

Dependent Varia	able: TO	TC						
Source	DF	Sı	m of Squares		Mean Square	F Val	ue	Pr > F
Model	4	48	317.06493506		1204.26623377	′ 0.	44	0.7759
Error	40	1084	42.93506494		2711.07337662			
Corrected Total	44	1132	260.00000000					
R-Square	C	2.V.	Root M	ISE	TOT Mea	n		
0.042531	58.94487		52.06796882		88.33333333			
Source	DF		Type I SS		Mean Square F	Value	F	Pr > F
CON	4	4817	.06493506	12	204.26623377	0.44	0	.7759
Dependent Varia	uble: T5	1						
Source	DF	Su	m of Squares		Mean Square	F Val	ue	Pr > F
Model	4	3	67.23751804		91.80937951	0.	41	0.8030
Error	40	90	37.96248196		225.94906205			
Corrected Total	44	94	05.20000000					
R-Square	C.V. Root MSE		SE	T51 Mear	1			
0.039046	48.80	390 15.03160211		30.8000000	0			
Source	DF		Type I SS		Mean Square F	Value	Р	' r > F
CON	4	367.	23751804		91.80937951	0.41	0.8	8030
Dependent Varia	ble: T5	2						
Source	DF	Su	m of Squares		Mean Square	F Val	ue	Pr > F
Model	4	3	10.59971140		77.64992785	0.	34	0.8499
Error	40	91	57.04473304		228.92611833			
Corrected Total	44	94	67.6444444					
R-Square	C.V.		Root MSE		T52 Mean			
0.032806	71.74	15.13030463		463	21.08888889			
Source	DF		Type I SS		Mean Square F	Value	Р	'r > F
CON	4	310.	59971140		77.64992785	0.34	0.	.8499

Dependent Varia	able: T	53				
Source	DF	Sum of Squares		Mean Squar	e F Valu	ue $Pr > F$
Model	4	2	04.48427128	51.1210678	2 0.2	0.9200
Error	40	88	92.71572872	222.3178932	2	
Corrected Total	44	90	97.20000000			
R-Square	C	2.V.	Root MS	E T53 Mea	n	
0.022478	70.55	360	14.9103284	1 21.1333333	3	
Source	DF		Type I SS	Mean Square	F Value	Pr > F
CON	4	204.4	48427128	51.12106782	0.23	0.9200
Dependent Varia	able: T5	54				
Source	DF	Su	m of Squares	Mean Squar	e F Valu	1e Pr > F
Model	4	39	95.26349206	98.81587302	2 0.5	5 0.6989
Error	40	710	55.71428571	179.14285714	4	
Corrected Total	44	756	50.97777778			
R-Square	C.V.		Root MS	E T54 Mear	1	
0.052277	98.57597		13.38442592	2 13.5777777	8	
Source	DF		Type I SS	Mean Square	F Value	Pr > F
CON	4	395.2	26349206	98.81587302	0.55	0.6989
Dependent Varia	able: Tl	10				
Source	DF	Sur	n of Squares	Mean Squar	e F Valu	Pr > F
Model	4	131	10.60028860	327.6500721	5 0.4	0.7837
Error	40	3024	47.84415584	756.19610390)	
Corrected Total	44	3155	58.4444444			
R-Square	C.V.		Root MS	E T110 Mea	n	
0.041529	52.99	52.99597 27.4		5 51.8888888	9	
Source	DF		Type I SS	Mean Square	F Value	Pr > F
CON	4	1310.6	50028860	327.65007215	0.43	0.7837

Dependent Varia	able: T	210						
Source	DF S		Sum of Squares		Mean Square	F Value		Pr > F
Model	4	(913.76681097		228.44170274	0.	32	0.8626
Error	40	285	515.47763348		712.88694084			
Corrected Total	44	294	129.24444444					
R-Square	C.V.		Root MSE		T210 Mean			
0.031050	76.92045		26.6999427		34.7111111	1		
Source	DF		Type I SS		Mean Square F	Value	P	'r > F
CON	4	913	.76681097	2	228.44170274	0.32	0.3	8626
Dependent Varia	able: T	12						
Source	DF	Sı	m of Squares		Mean Square	F Val	ue	Pr > F
Model	4	18	370.04617605		467.51154401	0.0	61	0.6581
Error	40	306	579.06493506		766.97662338			
Corrected Total	44	325	549.11111111					
R-Square	(C.V.	Root M	ISE	T12 Mean			
0.057453	75.99057		27.694342	280	36.4444444			
Source	DF		Type I SS		Mean Square F	Value	Р	' r > F
CON	4	1870	.04617605	4	467.51154401	0.61	0.6	5581
Dependent Varia	ble: D	IF10						
Source	DF	Su	im of Squares		Mean Square	F Val	ue	Pr > F
Model	4	13	99.75815296		349.93953824	1.1	12	0.3598
Error	40	124	76.81962482		311.92049062			
Corrected Total	44	138	76.57777778					
R-Square	(C.V.	Root M	SE	DIF10 Mean	L		
0.100872	102.8	8146	17.661270	92	17.17777778			
Source	DF		Type I SS		Mean Square F	Value	Р	r > F
CON	4	1399.	.75815296	3	49.93953824	1.12	0.3	3598
Dependent Varia	ble: DIF:	5						
-----------------	-----------	----------------	---------------	--------	------------------			
Source	DF	Sum of Squares	Mean Square	F Valu	e Pr > F			
Model	4	479.89668110	119.97417027	0.9	8 0.4288			
Error	40	4892.01443001	122.30036075					
Corrected Total	44	5371.9111111						
R-Square	C.\	/. Root MSE	DIF5 Mean	L				
0.089334	-9999.9	9 11.05894935	-0.04444444	ł				
Source	DF	Type I SS	Mean Square F	Value	Pr > F			
CON	4	479.89668110	119.97417027	0.98	0.4288			

General Linear Models Procedure

Level of		TO]	[T51-		T52	
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	11	80.727273	47.9522490	30.4545455	13.2692399	20.3636364	14.6100837
BNT	7	82.142857	38.3076519	32.2857143	16.9481000	20.5714286	11.5737799
BRI	11	91.272727	49.7897397	30.5454545	14.3412945	21.2727273	14.8532213
NBO	7	110.428571	50.8030745	35.8571429	15.8264396	26.5714286	9.8802352
BWB	9	81.666667	67.4240313	26.444444	15.7885331	17.8888889	20.6968865
Level of		T53-		T54-		T110)
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	11	18.9090909	12.7707051	11.0000000	12.9151074	50.8181818	26.1985426
BNT	7	19.1428571	14.5192811	10.1428571	7.2210011	52.8571429	24.2585282
BRI	11	24.4545455	5 15.6356237	15.0000000	13.0766968	51.8181818	26.0876146
NBO	7	21.000000	15.2861593	19.1428571	13.4465432	62.4285714	22.9627027
BWB	9	21.4444444	16.3944435	13.3333333	17.2843860	44.33333333	35.1496799
Level of		T210-		T12		DIF10	
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	11	29.9090909	24.8574116	29.9090909	24.8574116	20.9090909	17.5809815
BNT	7	29.2857143	20.7421815	29.2857143	20.7421815	23.5714286	23.8736755
BRI	11	39.4545455	26.7968791	39.4545455	26.7968791	12.3636364	17.8396902
NBO	7	40.1428571	27.1626494	48.0000000	32.2386931	22.2857143	20.1056732
BWB	9	34.777778	31.9130764	37.3333333	32.5998466	9.5555556	6.6916200

	DIF5				
Ν	Mean	SD			
11	1.45454545	10.4915550			
7	1.42857143	6.5791880			
11	-3.18181818	13.7099831			
7	5.57142857	12.0810753			
9	-3.55555556	9.8502679			
	N 11 7 11 7 9	DIF5 N Mean 11 1.45454545 7 1.42857143 11 -3.18181818 7 5.57142857 9 -3.5555556			

APPENDIX G

ANOVA ON ALL PARTICIPANTS WITHOUT THE EXPERIENCE FACTOR

General Linear Models Procedure Class Level Information

Class Levels Values CON 5 BDT BNT BRI NBO BWB Number of observations in data set = 106

Dependent Varia	ible: TC	DT						
Source	DF	Sun	n of Squares		Mean Square	F Val	ue	Pr > F
Model	4	506	6.57135311		1266.64283828	0.:	58	0.6807
Error	101	22212	8.03242048		2199.28744971			
Corrected Total	105	22719	4.60377359					
R-Square	С	.V.	Root M	[SE	TOT Mean	1		
0.022301	60.32	810	46.89656	117	77.73584906)		
Source	DF	1	Type I SS		Mean Square H	- Value	•	Pr > F
CON	4	5066.5	7135311	126	66.64283828	0.58	0.	6807
Dependent Varia	ıble: T5	1						
Source	DF	Surr	n of Squares		Mean Square	F Val	ue	Pr > F
Model	4	81-	4.44784065		203.61196016	1.	11	0.3570
Error	101	1856	0.04272539		183.76279926			
Corrected Total	105	1937	4.49056604					
R-Square	С	.V.	Root M	SE	T51 Mean			
0.042037	47.54	887	13.555913	381	28.50943396			
Source	DF	T	Type I SS]	Mean Square F	Value	Р	r > F
CON	4	814.4	4784065	2	03.61196016	1.11	0.	3570
Dependent Varia	ble: T5	2						
Source	DF	Sum	of Squares		Mean Square	F Val	ue	Pr > F
Model	4	25:	5.52796807		63.88199202	0.	36	0.8373
Error	101	17974	4.09467344		177.96133340			
Corrected Total	105	1822	9.62264151					
R-Square	с	.V.	Root M	SE	T52 Mean			
0.014017	73.115	597	13.340214	189	18.24528302			
Source	DF	Т	ype I SS]	Mean Square F	Value	P	r > F
CON	4	255.5	2796807	6	53.88199202	0.36	0.	8373

Dependent Varia	able: 1	.53						
Source	DF	S	um of Squares		Mean Square	F Val	ue	Pr > F
Model	4	19	971.83132225		492.95783056	2.	76	0.0319
Error	101	180	062.50830040		178.83671585			
Corrected Total	105	200)34.33962264					
R-Square		C.V.	Root M	ISE	T53 Mean			
0.098423	75.5	6164	13.37298	455	17.69811321			
Source	DF		Type I SS	i	Mean Square F	Value	Р	r > F
CON	4	197	1.83132225	4	92.95783056	2.76	0.0	0319
Dependent Varia	able: T	⁻ 54						
Source	DF	Sı	Im of Squares		Mean Square	F Val	ue	Pr > F
Model	4	2	341.99155915		85.49788979	0.0	51	0.6573
Error	101	141	86.09334651		140.45636977			
Corrected Total	105	145	28.08490566					
R-Square		C.V.	Root M	ISE	T54 Mean			
0.023540	104.	4266	11.851429	02	11.34905660			
Source	DF		Type I SS	l	Mean Square F	Value	P	r > F
CON	4	341	.99155915	8	5.49788979	0.61	0.6	5573
Dependent Varia	able: T	110						
Source	DF	Sı	m of Squares		Mean Square	F Valu	ue	Pr > F
Model	4	17	42.51874541		435.62968635	0.7	70	0.5909
Error	101	624	81.10389610		618.62479105			
Corrected Total	105	642	23.62264151					
R-Square		C.V.	Root M	SE	T110 Mean			
0.027132	53.1	9713	24.872169	01	46.75471698			
Source	DF		Type I SS	ľ	Mean Square F	Value	P	r > F
CON	4	1742	.51874541	43	35.62968635	0.70	0.5	i909

Dependent Varia	able: T	210			
Source	DF	Sun	n of Squares	Mean Square F Value Pr >	۰F
Model	4	372	9.42060681	932.35515170 1.63 0.172	35
Error	101	5791	7.34354414	573.43904499	
Corrected Total	105	6164	6.76415094		
R-Square	(C.V.	Root M	SE T210 Mean	
0.060497	82.44	035	23.946587	33 29.04716981	
Source	DF]	Гуре I SS	Mean Square F Value Pr > F	
CON	4	3729.4	2060681	932.35515170 1.63 0.1735	
Dependent Varia	able: T	12			
Source	DF	Sun	1 of Squares	Mean Square F Value Pr >	F
Model	4	22	32.44283069	558.11070767 0.91 0.462	33
Error	101	621	87.51943347	615.71801419	
Corrected Total	105	644	19.96226415		
R-Square	(C.V.	Root MS	SE T12 Mean	
0.034655	80.09	283	24.813665	88 30.98113208	
Source	DF]	Type I SS	Mean Square F Value Pr > F	
CON	4	2232.4	4283069	558.11070767 0.91 0.4633	
Dependent Varia	uble: D	IF10			
Source	DF	Sum	n of Squares	Mean Square F Value Pr >	F
Model	4	33	20.62288566	830.15572141 3.14 0.017	78
Error	101	267	27.31107660	264.62684234	
Corrected Total	105	3004	47.93396226		
R-Square	C	C.V.	Root MS	SE DIF10 Mean	
0.110511	91.86	679	16.267355	11 17.70754717	
Source	DF	Т	Type I SS	Mean Square F Value Pr > F	
CON	4	3320.6	2288566	830.15572141 3.14 0.0178	

Dependent Varia	ıble: D	IF5					
Source	DF	S	Sum of Squares	Mean Square	F Valı	ue Pr	> F
Model	4	2	249.90070280	562.47517570	5.2	21 0.0	007
Error	101	10	906.36344815	107.98379652			
Corrected Total	105	13	156.26415094				
R-Square	(C.V.	Root MSE	DIF5 Mear	1		
0.171014	1899	.141	10.39152523	0.54716981			
Source	DF		Type I SS	Mean Square F	Value	Pr > 1	F
CON	4	224	9.90070280	562.47517570	5.21	0.000	7

ALL PARTICIPANTS WITHOUT THE EXPERIENCE FACTOR

General Linear Models Procedure

Duncan's Multiple Range Test for variable: T53

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha = 0.05 df = 101 MSE = 178.8367WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 21.13701

Number of Means 2 3 4 5 Critical Range 8.160 8.588 8.871 9.079 Means with the same letter are not significantly different.

Duncan	Grouping	g Mean	Ν	CON
	Α	24.000	21	BRI
В	A	19.864	22	BWB
В	A	18.250	20	BNT
В	Α	15.450	20	BDT
В		11.348	23	NBO

Duncan's Multiple Range Test for variable: T210 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 101 MSE = 573.439 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 21.13701

Number of Means 2 3 4 5 Critical Range 14.61 15.38 15.89 16.26 Means with the same letter are not significantly different.

Dunca	in Grouj	ping Mean	N CON
	Α	36.667	21 BRI
В	Α	32.591	22 BWB
В	А	31.300	20 BNT
В	Α	25.150	20 BDT
В		20.130	23 NBO

Duncan's Multiple Range Test for variable: DIF10 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 101 MSE = 264.6268 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 21.13701

Number of Means 2 3 4 5 Critical Range 9.93 10.45 10.79 11.04 Means with the same letter are not significantly different.

Dunca	n Groupin	g Mean	N CON
	Α	23.870	23 NBO
	Α	23.450	20 BNT
В	Α	18.600	20 BDT
В		12.000	22 BWB
В		10.619	21 BRI

Duncan's Multiple Range Test for variable: DIF5 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 101 MSE = 107.9838 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 21.13701

Number of Means 2 3 4 5 Critical Range 6.341 6.673 6.894 7.055 Means with the same letter are not significantly different.

Duncan	Grouping A	Mean 6.957	N CON 23 NBO
В	A	2.800	20 BNT
В	Α	1.900	20 BDT
В	С	-3.545	22 BWB
	С	-5.619	21 BRI

.

General Linear Models Procedure

Level of		TOT-		T51		T52	
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	20	68.9000000	44.8422968	26.4000000	12.4832519	17.3500000	13.8915915
BNT	20	86.0500000	45.1226107	33.7000000	14.7687437	21.0500000	12.5717938
BRI	21	83.9523810	44.6995259	28.9047619	12.6526865	18.3809524	12.1015544
NBO	23	70.4782609	46.9785924	25.6956522	13.8938665	18.3043478	12.2601898
BWB	22	79.8636364	51.9718747	28.2727273	13.8122851	16.3181818	15.5360912
Level of		T53-		T54		T1	10
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	20	15.4500000	11.8520485	9.700000) 11.4987413	43.7500000	25.0575653
BNT	20	18.2500000	12.5021051	13.0500000	12.4328724	54.7500000	24.7681353
BRI	21	24.000000	15.6716304	12.6666667	12.0013888	47.2857143	21.7810534
NBO	23	11.3478261	12.3972456	8.7826087	10.8584133	44.0000000	24.3795742
BWB	22	19.8636364	14.0247925	12.7272727	12.4639741	44.5909091	27.8869471
			•			5-5-	
Level of		121	0	112		DIF	0
CON	N	Mean	SD	Mean	SD	Mean	SD
BDT	20	25.1500000	22.4904073	25.1500000	22.4904073	18.600000	16.0177533
BNT	20	31.3000000	23.5307190	31.300000	23.5307190	23.4500000	17.2702208
BRI	21	36.6666667	26.3217274	36.6666667	26.3217274	10.6190476	18.3425085
NBO	23	20.1304348	21.9861617	26.4782609	25.8102685	23.8695652	17.0355360
BWB	22	32.5909091	25.1616850	35.2727273	25.3962536	12.0000000	12.0948631
Levelof		Г)IF5				
CON	N	Mean	SD				
RDT	20		8 50325	02			
BNT	20	2 80000000	6 61417	02			
BRI	20	-5 61904762	14 88111	67 67			
NRO	21	6 95652174	0 04740	06			
RWR	22	-3 54545455	9 9 9 9 1 7	16			
Level of CON BDT BNT BRI NBO BWB	N 20 20 21 23 22	E Mean 1.90000000 2.80000000 -5.61904762 6.95652174 -3.54545455	DIF5 SD 8.50325 6.61417 14.88111 9.94749 9.98917	 02 93 62 06 16			

APPENDIX H

ANOVA ON INEXPERIENCED PARTICIPANTS ONLY

General Linear Models Procedure Class Level Information

Class Levels Values CON 5 BDT BNT BRI NBO BWB Number of observations in data set = 61

Dependent Varia	able: TO	Т		
Source	DF	Sum of Squares	Mean Square	F Value $Pr > F$
Model	4	12398.69871094	3099.67467774	1.87 0.1282
Error	56	92753.89145299	1656.31949023	
Corrected Total	60	105152.59016393		
R-Square	C.	V. Root MSI	E TOT Mean	L
0.117911	58.208	40.6979052	69.91803279)
Source	DF	Type I SS	Mean Square F	Value $Pr > F$
CON	4	12398.69871094	3099.67467774	1.87 0.1282
Dependent Varia	ble: T5	l		
Source	DF	Sum of Squares	Mean Square	F Value $Pr > F$
Model	4	1612.43263276	403.10815819	2.84 0.0324
Error	56	7946.58376068	141.90328144	
Corrected Total	60	9559.01639344		
R-Square	C.	V. Root MSE	E T51 Mean	
0.168682	44.416	11.91231638	26.819672 13	1
Source	DF	Type I SS	Mean Square F	Value Pr > F
CON	4	1612.43263276	403.10815819	2.84 0.0324
Dependent Varia	ble: T52	2		
Source	DF	Sum of Squares	Mean Square	F Value $Pr > F$
Model	4	455.55770807	113.88942702	0.83 0.5111
Error	56	7674.11442308	137.03775755	
Corrected Total	60	8129.67213115		
R-Square	C.	V. Root MSE	E T52 Mean	
0.056036	72.495	95 11.70631272	2 16.14754098	1
Source	DF	Type I SS	Mean Square F	Value Pr > F
CON	4	455.55770807	113.88942702	0.83 0.5111

Dependent Varia	able: T	53					
Source	DF	Su	m of Squares		Mean Square	F Val	ue $Pr > F$
Model	4	212	25.93971557		531.48492889	3.7	7 0.0087
Error	56	788	38.42094017		140.86465965		
Corrected Total	60	100	14.36065574				
R-Square	(C.V.	Root M	SE	T53 Mean		
0.212289	78.2	6888	11.868641	86	15.16393443		
Source	DF		Type I SS	N	Mean Square F	Value	Pr > F
CON	4	2125	.93971557	53	31.48492889	3.77	0.0087
Dependent Varia	able: T	54					
Source	DF	Su	m of Squares		Mean Square	F Val	ue $Pr > F$
Model	4	90	2.05348186		225.51337046	2.2	2 0.0779
Error	56	567	6.63504274		101.36848291		
Corrected Total	60	65	78.68852459				
R-Square	(C.V.	Root MS	SE	T54 Mean		
0.137118	103.7	7432	10.068191	64	9.70491803		
Source	DF		Type I SS	N	Aean Square F	Value	Pr > F
CON	4	902.0	05348186	22	25.51337046	2.22	0.0779
Dependent Varia	ble: T	110					
Source	DF	Su	m of Squares		Mean Square	F Valu	1e Pr > F
Model	4	352	23.39265273		880.84816318	1.8	2 0.1375
Error	56	270	80.54177350		483.58110310		
Corrected Total	60	306	03.93442623				
R-Square	(C.V.	Root MS	SE	T110 Mean		
0.115129	51.17	7967	21.990477	56	42.96721311		
Source	DF		Type I SS	N	Aean Square F	Value	Pr > F
CON	4	3523.	39265273	88	0.84816318	1.82	0.1375

Dependent Varia	ble: T2	10		
Source	DF	Sum of Squares	Mean Square	F Value $Pr > F$
Model	4	5186.80081967	1296,70020492	2.96 0.0273
Error	56	24522.15000000	437.89553571	2000 010210
Corrected Total	60	29708.95081967		
R-Square	C	V Root MSF	T210 Mean	
0 174587	84 145	523 20 92595364	1 24 86885246	
0.17 1507	04.145		- 24.00005240	,
Source	DF	Type I SS	Mean Square F	Value Pr > F
CON	4	5186.80081967	1296.70020492	2.96 0.0273
Dependent Varia	ble: T12	2		
Source	DF	Sum of Squares	Mean Square	F Value $Pr > F$
Model	4	3530.74572825	882.68643206	1.90 0.1231
Error	56	26006.10673077	464.39476305	
Corrected Total	60	29536.85245902		
R-Square	C	V. Root MSF	T12 Mean	
0.119537	79.959	21.54982049	26.95081967	
Source	DF	Type LSS	Mean Square F	Value Pr>F
CON	4	3530.74572825	882.68643206	1.90 0.1231
Dependent Varia	ble: DI	710		
Source	DF	Sum of Squares	Mean Square	F Value $Pr > F$
Model	4	2215 97062666	553 99265667	2 23 0 0777
Error	56	13933,43920940	248 81141445	2.25 0.0777
Corrected Total	60	16149.40983607	210.01111119	
R-Square	C.	V. Root MSE	DIF10 Mean	
0.137217	87.155	15.77375714	18.09836066	
Source	DF	Type I SS	Mean Souare F	Value Pr > F
CON	4	2215.97062666	553.99265667	2.23 0.0777

Dependent Varia	ble: DII	F5				
Source	DF	Sum of	f Squares	Mean Squa	re F Valu	e $Pr > F$
Model	4	1924.2	6234587	481.0655864	4.6	2 0.0027
Error	56	5832.72	2126068	104.1557368	0	
Corrected Total	60	7756.9	8360656			
R-Square	C.	V.	Root MSE	DIF5 Me	an	
0.248068	1037.5	77	10.20567180	0.9836065	56	
Source	DF	Тур	e I SS	Mean Square	F Value	Pr > F
CON	4	1924.262	34587	481.06558647	4.62	0.0027

General Linear Models Procedure

Duncan's Multiple Range Test for variable: T51 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 56 MSE = 141.9033 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 11.69708

Number of Means 2 3 4 5 Critical Range 9.87 10.38 10.72 10.96 Means with the same letter are not significantly different.

Dunca	n Groupin A	g Mean 34.462	N CON 13 BNT
В	Α	29.538	13 BWB
В	Α	27.100	10 BRI
В		21.444	9 BDT
В		21.250	16 NBO

Duncan's Multiple Range Test for variable: T53 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 56 MSE = 140.8647 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 11.69708

Number of Means 2 3 4 5 Critical Range 9.83 10.34 10.68 10.92 Means with the same letter are not significantly different.

Dunca	n Group A	oing Mean 23.500	N CON 10 BRI
В	A	18.769	13 BWB
В	A	17.769	13 BNT
В	С	11.222	9 BDT
	С	7.125	16 NBO

Duncan's Multiple Range Test for variable: T54 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 56 MSE = 101.3685 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 11.69708

Number of Means 2 3 4 5 Critical Range 8.340 8.773 9.058 9.265 Means with the same letter are not significantly different.

Dunca	n Grouping	g Mean	N CON
	A	14.615	13 BNT
B	Α	12.308	13 BWB
В	Α	10.100	10 BRI .
В	Α	8.111	9 BDT
В		4.250	16 NBO

Duncan's Multiple Range Test for variable: T110 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 56 MSE = 483.5811 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 11.69708

Number of Means 2 3 4 5 Critical Range 18.22 19.16 19.78 20.24 Means with the same letter are not significantly different.

Duncan	Grouping A	g Mean 55.769	N CON 13 BNT
В	A	44.769	13 BWB
В	А	42.300	10 BRI
В		35.938	16 NBO
В		35.111	9 BDT

Duncan's Multiple Range Test for variable: T210 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 56 MSE = 437.8955 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 11.69708

Number of Means 2 3 4 5 Critical Range 17.33 18.23 18.83 19.26 Means with the same letter are not significantly different.

Dunca	n Groupi	ng Mean	N CON
	Α	33.600	10 BRI
	Α	32.385	13 BNT
	Α	31.077	13 BWB
В	A	19.333	9 BDT
В		11.375	16 NBO

Duncan's Multiple Range Test for variable: DIF10 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 56 MSE = 248.8114 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 11.69708

Number of Means 2 3 4 5 Critical Range 13.07 13.74 14.19 14.52 Means with the same letter are not significantly different.

Duncan	Groupin	g Mean	N CON
	A	24.563	16 NBO
	A	23.385	13 BNT
В	А	15.778	9 BDT
В	A	13.692	13 BWB
В		8.700	10 BRI

Duncan's Multiple Range Test for variable: DIF5 NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> Alpha = 0.05 df = 56 MSE = 104.1557 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 11.69708

Number of Means 2 3 4 5 Critical Range 8.454 8.893 9.182 9.392 Means with the same letter are not significantly different.

Duncar	n Grouping A	g Mean 7.563	N CON 16 NBO
В	A	3.538	13 BNT
В	A	2.444	9 BDT
В	С	-3.538	13 BWB
	С	-8.300	10 BRI

General Linear Models Procedure

Level of		TO	ſ	T51		T52	
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	9	54.444444	38.3930694	21.4444444	9.9888827	13.6666667	12.7964839
BNT	13	88.1538462	49.7625129	34.4615385	14.1398691	21.3076923	13.5301183
BRI	10	75.9000000	39.3459019	27.1000000	10.9691487	15.2000000	7.6710133
NBO	16	53.0000000	33.6729367	21.2500000	10.6614571	14.6875000	11.6431310
BWB	13	78.6153846	41.1350185	29.5384615	12.7842050	15.2307692	11.5625390
Level of		T53		T54		T11	0
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	9	11.2222222	9.6537270	8.1111111	10.0180393	35.1111111	21.9228445
BNT	13	17.7692308	11.8894480	14.6153846	14.5289278	55.7692308	25.9587938
BRI	10	23.5000000	16.5411944	10.1000000	10.7749710	42.3000000	15.6634749
NBO	16	7.1250000	8.3336667	4.2500000	5.3478968	35.9375000	20.8085519
BWB	13	18.7692308	12.7223808	12.3076923	8.4988687	44.7692308	23.1774094
Level of		T21	0	T12		DIF	10
CON	Ν	Mean	SD	Mean	SD	Mean	SD
BDT	9	19.3333333	18.9670767	19.3333333	8 18.9670767	15.777778	14.3768719
BNT	13	32.3846154	25.6500112	32.3846154	25.6500112	23.3846154	13.6841664
BRI	10	33.6000000	26.8667494	33.600000	26.8667494	8.7000000	19.6528200
NBO	16	11.3750000	12.0492047	17.0625000	15.8302190	24.5625000	16.1945207
BWB	13	31.0769231	20.5647819	33.8461538	20.3668282	13.6923077	14.7839136
Level of		DI	F5				
CON	Ν	Mean	SD				
BDT	9	2.44444444	5.790317	6			
BNT	13	3.53846154	6.777602	6			
BRI	10	-8.3000000	16.371044	9			
NBO	16	7.56250000	9.244593	0			
סענוס	12	2 52046154	10 405022	1			

BWB 13 -3.53846154 10.4850321

APPENDIX I

RELIABILITY TEST FOR ALL PARTICIPANTS

RELIABILITY TEST FOR ALL PARTICIPANTS

Correlation Analysis 2 'VAR' Variables: RELTOT TOT Simple Statistics

 Variable
 N
 Mean
 Std Dev
 Sum
 Minimum
 Maximum

 RELTOT
 25
 39.240000
 19.216486
 981.000000
 8.000000
 93.000000

 TOT
 25
 92.920000
 55.093799
 2323.000000
 14.000000
 209.000000

 Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 25
 25
 25
 25
 25

RELTOT		TOT
RELTOT	1.00000 0.0	0.86707 0.0001
ТОТ	0.86707 0.0001	1.00000 0.0

90

REFERENCES

Browne, B. A. & Cruse, D. F. (1988). The incubation effect: Illusion or illumination?. <u>Human Performance</u>, 1 (3), 177-185.

Csikszentimihalyi, M. & Sawyer, K. (1995). Creative Insight: The Social Dimension of a Solitary Moment. In R.J. Sternberg & J. E. Davidson (Eds.), <u>The Nature of Insight</u> (pp. 229-251). City: Publisher.

Diehl, M. & Stroebe, W. (1987). Productivity loss in brainstorming groups: Toward the solution of a riddle. Journal of Personality and Social Psychology, 53, 497-509.

Diehl, M. & Stroebe, W. (1991). Productivity loss in idea-generating groups: Tracking down the blocking effect. Journal of Personality and Social Psychology, 61, 392-403.

Dzindolet, M. <u>An assessment of blocking and social influence processes in</u> <u>brainstorming</u> (Doctoral dissertation, University of Texas at Arlington, 1993).

Goldman, W. P., Wolters, N. C. W., & Winograd, E. (1992). A demonstration of incubation in anagram problem solving. <u>Bulletin of the Psychonomic Society, 30</u> (1), 36-38.

Horn, E. (1993). <u>The influence of modality order and break period on a</u> <u>brainstorming task.</u> Unpublished manuscript, University of Texas at Arlington.

Kaplan, C. A. Hatching a theory of incubation: Does putting a problem aside really help? If so, why? (Doctoral dissertation, Carnegie-Mellon University of Pennsylvania, 1990). <u>Dissertation Abstracts International 53 (8-B)</u>, 4399. Kirkwood, W. G. (1984). Effects of incubation sequences on communication and problem solving in small groups. Journal of Creative Behavior, 18, (1), 45-61.

Larey, T. S. <u>Convergent and divergent thinking, group composition, and creativity in</u> brainstorming groups (Doctoral dissertation, University of Texas at Arlington, 1994).

Mensink, G. & Raaijmakers, J. G. W. (1989). A model for interference and forgetting. <u>Psychological Review</u>, 95, 434-455.

Offner, A. K., Kramer, T. J., & Winter, J. P. (1996). The effects of facilitation, recording, and pauses on group brainstorming. <u>Small Group Research, 27</u> (2), 283-298

Osborn, A. F. (1963). Periods of incubation invite illumination. In A. F. Osborn, <u>Applied Imagination</u> (pp. 314-325). New York: Charles Scribner's Sons.

Parnes, S.J., & Meadow, A. (1959). Effects of "brainstorming" instructions on creative problem solving by trained and untrained subjects. Journal of Educational <u>Psychology, 50</u> (4), 171-177.

Paulus, P. B. & Dzindolet, M. T. (1993). Social influence processes in group brainstorming. Journal of Personality & Social Psychology, 64 (4), 575-586.

Smith, S. M. (1995). Getting into and out of mental ruts: A theory of fixation, incubation and insight. In R.J. Sternberg & J. E. Davidson (Eds.), <u>The Nature of Insight</u> (pp. 229-251). City: Publisher.

Smith, S. M., & Blankenship, S. E. (1991). Incubation and the persistence of fixation in problem solving. American Journal of Psychology, 104 (1), 61-87.

Smith, S. M. & Vela, E. (1991). Incubated reminiscence effects. <u>Memory and</u> <u>Cognition, 19</u> (2), 168-176. New York: Holt, Rinehart & Winston.

BIOGRAPHICAL STATEMENT

Karie Ann Colacicco Mitchell graduated in 1988 from William Howard Taft H.S. in San Antonio, TX. She then attended Texas A&M University, and received her Bachelor of Science in Psychology in 1992. In the autumn of 1993, she began attending The University of Texas at Arlington. She will graduate in May 1998 with a Master of Science in Psychology from UTA. Karie is also a member of Psi Chi.