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a b s t r a c t

In this article, we study how drivers interact with in-car interfaces, particularly by focusing on under-
standing driver in-car glance behavior when multitasking while driving. The work focuses on using an in-
car touch screen to find a target item from a large number of unordered visual items spread across multiple
screens. We first describe a cognitive model that aims to represent a driver's visual sampling strategy when
interacting with an in-car display. The proposed strategy assumes that drivers are aware of the passage of
time during the search task; they try to adjust their glances at the display to a time limit, after which they
switch back to the driving task; and they adjust their time limits based on their performance in the current
driving environment. For visual search, the model assumes a random starting point, inhibition of return,
and a search strategy that always seeks the nearest uninspected item. We validate the model's predictions
with empirical data collected in two driving simulator studies with eye tracking. The results of the empirical
study suggest that the visual design of in-car displays can have a significant impact on the probability of
distraction. In particular, the results suggest that designers should try to minimize total task durations and
the durations of all visual encoding steps required for an in-car task, as well as minimize the distance
between visual display elements that are encoded one after the other. The cognitive model helps to explain
gaze allocation strategies for performing in-car tasks while driving, and thus helps to quantify the effects of
task duration and visual item spacing on safety-critical in-car glance durations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ubiquitous computing has brought a wealth of information and
entertainment to the fingertips of drivers. Although there are clear
benefits to the increased availability of services and infotainment
on the road, there may be serious drawbacks: in-car visual tasks
increase the probability that driver's eyes wander from the road,
potentially leading to unsafe situations for the driver and others.
Extensive field studies have noted the statistical relationship
between in-car glance durations and the probability of safety-
critical incidents (see Liang et al., 2012). While the responsibility of
safe driving belongs primarily with the driver, those who design
and build in-car user interfaces also strive to minimize the
potential of visual distraction of these interfaces.

The U.S. National Highway Traffic Safety Administration (2013)
recently released testing and verification guidelines for in-vehicle

electronic devices. These guidelines propose three criteria for newly
developed in-car systems:

1. Individual glance durations: “For at least 21 of the 24 test par-
ticipants, no more than 15% (rounded up) of the total number of
eye glances away from the forward road scene have duration of
greater than 2.0 s while performing the testable task one time”.

2. Mean glance duration: “For at least 21 of the 24 test participants,
the mean duration of all eye glances away from the forward road
scene is less than or equal to 2.0 s while performing the testable
task one time”.

3. Total glance time: “For at least 21 of the 24 test participants, the
sum of the durations of each individual participant's eye
glances away from the forward road scene is less or equal to
12.0 s while performing the testable task one time”.

As a complement to such guidelines, there are various helpful
procedures (e.g., SAE-J2365, 2002) and prototyping tools (e.g., Dis-
tract-R: Salvucci, 2009) available for designers for analyzing relevant
measures of driver distraction and performance, such as in-car task
completion times and effects on lateral vehicle control. However,
these methods are currently unable to predict arguably the most
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safety-relevant aspect of multitasking while driving, namely in-car
glance behavior (NHTSA, 2013; Liang et al., 2012) and to provide
guidance in design to create in-car user interfaces that would pass
the NHTSA criteria. At least for now, designers and manufacturers
must still rely on expensive and time-consuming testing with human
drivers on novel in-car user interfaces. A deeper understanding of
drivers' visual sampling strategies would go a long way toward more
rigorous testing procedures, empirical and otherwise, to better
predict and alleviate driver distraction.

In this paper, we study how drivers perform visual sampling on
an in-car device interface, specifically when searching through a
large number of unordered visual items (e.g., radio stations, music
albums and songs, navigational points of interest) spread across
multiple screens. Specifically, we study the effects of two possible
layouts for its visual items: a Grid layout with a constant number
of columns and varying number of rows, and a List layout with a
vertical list of all items. Kujala and Saariluoma (2011) found higher
individual in-car glance durations by increasing the number of
items per screen as well as increased glance durations for a Grid-
style menu layout compared to a list layout.

The results of the current work help in understanding the effects
of unordered menu layout on driver glance behavior, and more
generally, to elucidate possible gaze allocation strategies used by
drivers when interacting with in-car displays. As such, we hope to
better understand drivers' visual sampling in general and in the
context of recent guidelines and tools like those mentioned above.

We begin by specifying a proposed strategy for visual sampling
while driving, along with an instantiation of this strategy as a
computational cognitive model developed in the ACT-R cognitive
architecture (Anderson et al., 2004). The proposed strategy is based
on several key assumptions: (1) each in-car glance begins with the
driver fixating a random item on the display; (2) after encoding the
current item, the driver transitions to the nearest yet-unattended item
(in unordered menus), thus inhibiting return to attended items;
(3) drivers monitor the passage of time during performance of the
search task; (4) to the best of their ability, drivers try to limit their
glances at the display to a reasonable amount of time, after which they
switch back to the driving task; (5) drivers adjust their time limits for
search based on their performance in the current driving environment.
Given this sampling strategy and model, we describe two experiments
that provide human data to elucidate these issues and to test the
validity of the claims as embodied by the cognitive model.

2. Visual sampling while driving: strategy and model

Visual search construed most broadly is an extremely interesting
and challenging problem with many aspects (Wolfe, 2007). In the
context of in-vehicle interfaces, visual search can take on a more
specific form in three ways. First, visual search is often constrained
to a set of similarly sized items with text labels and/or icons;
certainly this is not always the case (e.g., search in a navigational
map), but is one common case for in-vehicle interfaces. Second,
visual search often occurs across multiple screens of items: because
an in-vehicle display can typically hold a very limited set of items,
scrolling across screens is likely in many search scenarios. Third, the
visual search is not continuous, but instead done by brief in-vehicle
glances returning vision back to the road in between the glances (i.
e., visual sampling). Thus, as mentioned, we focus our efforts on
visual sampling in the context of a Grid or List of varying number of
items spread across multiple screens.

2.1. Visual-search strategy

We begin by proposing a core strategy for visual search while
driving, borrowing a number of ideas from previous models of

visual search in non-multitasking contexts. First, we assume that
the visual-search task is interleaved with driving in a series of
glances to the display (for search) that are interleaved with glances
to the roadway (for driving). An in-car glance is defined here
(following SAE-J2396: SAE, 2000) to begin once the gaze starts to
move towards the in-car display, and to end once the gaze has
returned to the road scene. Thus, an in-car glance can comprise
several fixations on the in-car display.

Each in-car glance begins with the driver fixating a random
item on the display. When the driver finishes encoding the current
item, we assume, following the model of Halverson and Hornof
(2007), that the driver transitions to the nearest yet-unattended
item; if there are multiple nearest unattended items, the driver
chooses one at random. The limitation of this kind of search model
is that it does not probably apply to semantic and alphabetic
organizations of items (Bailly et al., 2014). Thus, here we are
modeling search behaviors in unordered menus. It also assumes
inhibition of return to attended items, which has been found in
standard visual-search paradigms (e.g., Klein, 2000; Posner and
Cohen, 1984) but has not, to our knowledge, been explored in a
similar multitasking context. The central issue here is whether
“markers” of attended items (e.g., “FINSTs”: Pylyshyn, 1989) persist
across multiple glances to a display—or, put another way, whether
the items marked as attended will remain marked after an
interleaving glance to the roadway and the associated time needed
to focus on the driving task.

2.2. Interleaving strategy

The next challenge in our understanding of visual sampling while
driving concerns the timing of interleaving between the search and
driving tasks. Our understanding of this process generally follows
the guidelines of the theory of threaded cognition (Salvucci and
Taatgen, 2008), which assumes that each task is associated with a
distinct cognitive “thread” and that these threads share cognitive
resources in a balanced manner. However, this theory does not
dictate one important piece of driver behavior, namely how the
driver shares visual resources between the two tasks. For this
purpose, we make three important assumptions: (1) that drivers
are aware of the passage of time (to the best of their ability) during
performance of the search task; (2) that drivers try to limit their
glances to a reasonable amount of time, after which they switch
back to the primary driving task; and (3) drivers adjust their time
limits for search based on aspects of, and their performance in, the
current driving environment.

Related to the first two assumptions, Wierwille (1993) found that
drivers try to limit in-car glances within the range of 500�1600 ms
in most real-world driving environments. Related to the third
assumption, Wierwille (1993) also found that drivers adapt their
in-car glance durations according to the driving task demands by
shortening individual glance durations with increased driving
demands. More specifically, our proposed strategy posits that drivers
adapt their time limit for in-car glance based on the driving
environment immediately upon returning to the driving task: if
the vehicle is stable and “well-placed” in the lane, drivers increase
the limit, under the notion that perhaps they could have done more
searching; if the vehicle is unstable and/or badly displaced from the
lane center, drivers decrease the limit, under the notion that the
current limit was too long and resulted in a less desirable situation.
The details of this process are further quantified in the model below.

2.3. Cognitive model

The above sections provide a description of the overall strategy
for visual sampling while driving; however, we desire a more
rigorous formulation to facilitate testing and direct comparison to
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empirical data. For this purpose, we developed a computational
cognitive model of these strategies in the ACT-R architecture
(Anderson et al., 2004) using the Java ACT-R task environment
(version 1.1). ACT-R has a long history of modeling both driving
(Salvucci, 2006) and complex perceptual-motor tasks more gen-
erally (summarized in Anderson et al., 2004). Models developed in
ACT-R are specified as condition�action production rules that
embody particular procedural skills (e.g., the skills necessary for
driving and search). For our model here, ACT-R offers a number of
benefits, most notably the incorporation of rigorous theories of eye
movements and temporal perception (described soon), as well
as the ability to run computer simulations to gather testable
predictions.

The model of visual search generally follows the strategy specified
earlier, instantiated in the form of ACT-R production rules that follow
this process: for each in-car glance, ACT-R's spotlight of visual
attention starts at a random item, then proceeds to the nearest
not-yet-attended item. From these unobservable shifts of visual
attention, ACT-R predicts observable eye movements using a recent
theory developed for reading and related tasks (Salvucci, 2001); this
theory can predict, for example, skipped fixations on short high-
frequency words and multiple fixations on long low-frequency
words, and thus provides a realistic mapping from attention to eye
movements. To check whether or not a particular item matches the
target, the model checks the first word of the item's title, and in the
case of a match, continues checking the rest of the title. If the item
matches the target, the model presses the item to complete the trial;
otherwise, the model continues to the nearest unattended item as
described earlier. Eventually, if the model has attended all the items
and still has not found the target, the model locates and presses the
downward scroll arrow to view the subsequent screen. We assume,
following Janssen et al. (2012), that the press of a scroll button would
act as a motor cue and a natural break point for a task switch, and
thus, our model returns eyes back to the driving environment after
each change of a screen.

The model of the secondary task was then integrated with an
existing model of driver behavior (Salvucci, 2006). The interleav-
ing of search and driving follows the strategy mentioned earlier,
and through its instantiation in ACT-R, benefits from ACT-R's
embedded theory of time perception (Taatgen et al., 2007). The
theory of time perception posits that internally, time perception
acts like a metronome that ticks slower as time progresses, with
additional noise drawn from a logistic distribution—the end result
being predictions that match well to the abilities and limitations of
real human time perception. The initial number of “ticks” used by
the model for an in-car glance was set to start with a cautious
strategy, near the lower limit of Wierwille's (1993) visual sampling
model—17 ticks, which corresponds to roughly 500 ms (although
noise in the model may change this interval slightly). Whenever
the model begins an in-car glance, it starts its mental timer, and

continues to check whether the time has reached or surpassed the
current limit; when it has, the model switches back to the primary
driving task.

As for human drivers, the model driver can adapt its time
threshold according to the demands of the driving environment.
When the model returns to the driving task after a search glance, it
estimates the stability of the driving in relation to speed and lane
position. Vehicle stability is measured in the model as a function of
the vehicle's lateral position in the lane and its lateral (side-to-
side) velocity; as detailed in Salvucci (2006), there are two
parameters that control the estimate of stability, namely thresh-
olds for lateral position and lateral velocity. If the driving is stable,
the model increases the time limit by 1 tick; if not, the model
resets the limit to its initial value, representing a decision to revert
back to a safe interval (see Salvucci et al., 2006, for a similar
approach). The 1-tick increase here corresponds to the most
cautious increase—initially small, but increasingly large because
of increasing noise in estimates of longer time periods (Taatgen
et al., 2007).

Fig. 1 provides an overview of the model's general flow of
processing including branches at decision points. The boxes
roughly correspond to the core ACT-R production rules that control
behavior, and the arrows represent typical control flow from one
rule to the next. It should be noted that under the integrated
theory of time perception (Taatgen et al., 2007), the internal
cognitive timer is updated subconsciously (i.e., is not actively
performed or controlled by the driver directly). The noise in the
timing process also occurs automatically and can result in slightly
different perceptions of time for different trials. Nevertheless, the
act of checking and acting upon the running timer is indeed under
active driver control, and is noted in the figure as part of the
checks for whether the time has reached the desired limit.

In running model simulations, the model driver was given the
goal to drive at 80 km/h on the center lane of a three-lane road and
to follow a simulated car that kept a constant speed of 80 km/h,
following the NHTSA testing guidelines (2013). We estimated several
parameters of the model to achieve the best overall fit to the
empirical data of the experiments: two parameters that account for
visual encoding times (emma-enc-fac¼ .009, default .006, emma-enc-
exp¼1.0, default .4), and the driver's stability factor (stability
factor¼2.0). The stability factor affects the driver's threshold for
vehicle instability, above which the driver avoids switching away
from driving as described above (Salvucci, 2009). It was observed
that drivers did tolerate a fair amount of deviation in vehicle's lateral
position but that lane excursions were rare.

The resulting model of search and driving behavior runs in simu-
lation and generates predictions of task performance. Most critically
for purposes here, the model generates predictions of in-car glance
durations, as derived by the movement of visual attention dictated by
the model's search and task interleaving mechanisms as well as

Driving Search 

Attend lane center 

Attend lead car 

Encode lead car 

If car is not stable, 
Continue driving; 

If first iteration  
after interruption, 
Reset time limit 

If car is stable, 
Resume search; 
If first iteration  

after interruption, 
Increment time limit 

Encode item 

If item ≠ target 
and time < limit, 

Continue search 

If item ≠ target 
and time ≥ limit, 

Interrupt search 

If item = target, 
Press target item 

If no more items, 
Press down button 

Find next item 

Fig. 1. Schematic overview of the model's flow of processing.
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by the predictive model of eye movements built into the ACT-R
architecture, as mentioned. In the next two sections, we report the
results of two empirical studies and, for each, compare these results
with the predictions of the full model to better understand how
our proposed strategies correspond to human behavior in the em-
pirical tasks.

3. Experiment 1: menu structure and number of menu items

The first experiment examined the effects of varying the menu
layout and the number of the items in the in-car menu, using the
Grid and List layouts as well as the number of menu items (6, 9 and
12 items per screen, i.e., 60, 90 and 120 menu items per 10-screen
menu) as the critical variants. This section describes the experi-
ment and results, and also compares the empirical results to those
of the ACT-R model to better understand how human behavior
matches the visual-search and interleaving strategies described in
the previous section.

3.1. Research method

The experiment followed a within-subject 2�3 design. There
were two different menu structures in the in-car search tasks, Grid
and List, as well as three different sizes of item sets per screen (6,
9 and 12 items), corresponding to item sets of 60, 90, and 120
items in total per 10 screen menus.

3.1.1. Participants
A total of 12 volunteers were recruited via student mailing lists of

University of Jyväskylä. The sample included 6 women and 6 men
between the ages of 22 and 34. They all had a valid driving license and
either 20,000 km or 2 years of driving experience; these criteria
served to mitigate the effect of low driving experience on visual
sampling efficiency (Wikman et al., 1998). All the participants had
normal or corrected-to-normal vision. The experiments were con-
ducted in Finnish with fluent Finnish speakers. Participants received a
movie ticket as compensation for participation in the study.

3.1.2. Environment and tools
The medium-fidelity fixed-base driving simulator used in the

study is located at the driving simulator laboratory of the Depart-
ment of Computer Science and Information Systems in the Uni-
versity of Jyväskylä (see Fig. 2). The virtual driving scene was
projected on three screens with a resolution of 1280�1024 pixels
each. The front screen, positioned at a distance of roughly 135 cm
from the participants' eyes, measured 170�64 cm2 and the two side
screens measured 110�64 cm2. The left screen was roughly 130 cm
whereas the right side screen was roughly 150 cm from the par-
ticipant's eyes. The corresponding visual angles subtended by the
front driving scene were as follows: horizontal, 72.21; vertical, 27.21.
The visual angles subtended by the left screen were as follows: 48.51
horizontal, 28.21 vertical and by the right screen: 42.01 horizontal,
24.41 vertical. The visual angle for the participant between the
driving screens and the 22 in. interactive display was roughly 371.
The size of the interactive screen on the upper part of the display
was 640 by 380 pixels (18.0�10.7 cm2, 8.2 in.), the distance from
the participant's eyes was about 75 cm and the corresponding visual
angles subtended by the screen were as follows: horizontal, 13.71;
vertical, 8.21. The simulator was equipped with a Logitech G25 force-
feedback steering wheel, accelerator, and brake. The distance from
participant to the screens was fixed but the positions of the pedals
and the steering wheel were adjustable.

The driving simulation software was provided by Eepsoft (http://
www.eepsoft.fi). In the experiment, drivers navigated a virtual
environment with a three-lane empty straight highway road and an

instructed speed limit of 80 km/h. The virtual environment included a
head-up display (HUD) speedometer, RPM gauge, and rear- and side-
view mirrors. The virtual car's transmission was set to automatic.
Driving log data were logged and saved at 10 Hz. The research
equipment included a head-mounted Dikablis eye-tracking system
with a 50 Hz sampling rate and a laptop for controlling the
secondary-task display, namely a 3M M2256PW (22 in.) capacitive
multi-touch display. In this first experiment, an additional eye
tracking system—a SMI RED remote eye-tracking system with
500 Hz sample rate—was attached to the top of the touch screen to
record more detailed data on participants' eye movements on the
display.

The search tasks were performed on the screen with six different
layouts, illustrated in Fig. 3. The font size was identical in all text
labels in all conditions. The search tasks simulated a situation in
which the participant searches for a certain song in an in-car music
player. The distraction effects of searching music tracks while driving
are some of the most studied topics in distraction research (e.g., Jeon
et al., 2015; Lee et al., 2012; Chisholm et al., 2007; Salvucci et al.,
2007). The song titles were artificial and were generated with an
online song name generator (http://www.songname.net/). The song
lists were unordered and the positions of the song titles on each
screen were varied. Although an alphabetical ordering might be
used in some cases on real systems, there are many real-world
situations in which alternative orderings would be used (e.g., sorting
points of interest by proximity to the driver); we focus here on the
more general case in which there is no predetermined ordering for
the items, thus minimizing potential effects of previous knowledge
and practice.

3.1.3. Procedure
After collection of demographic data, all participants completed

a practice driving session that used the same driving environment
as that of the experiment and lasted until the participant felt
comfortable with the task (on average about 5 min per practice).
Participants also did a practice session on multitasking (i.e.,
performing the search task while driving). In the experiment there
were 6 blocks, one for each condition. Blocks were clustered by
menu layout (Grid or List), with half the participants starting with
the List layout, and half with the Grid layout in order to control
unwanted learning effects (see Appendix A for an example). For
the first three blocks, a random order of number of items per
screen (6, 9, 12) was chosen for each participant. This order of
blocks was repeated for the second set of blocks. Within each
block, there were three trials. The first trial was considered a
practice trial and only the other two were analyzed in order to
further mitigate unwanted learning effects. The target items were

Fig. 2. The medium-fidelity driving simulator and the experimental setup from the
participant's point of view.
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always located at the same serial position from the beginning of
the menu between the trials, which meant that the target item
was located on different screens in the menus but the participant
had to inspect the same number of items in the menu (from List-6
to List-9 and so on) in order to reach the target (see Appendix A).

Participants were instructed to follow a speed limit of 80 km/h,
following the NHTSA (2013) driving scenario and the simulation
model. To encourage the participants prioritize the driving task,
they were informed that the 6 most accurate participants in the
driving task would be rewarded with an additional movie ticket.
Driving task accuracy was assessed as a function of the total
duration of lane excursions (more time outside the lane being
equivalent to lower accuracy). The accuracy of lane keeping was
assessed by how many times the HUD speedometer (see Fig. 2)
crossed a white lane marking. Participants were also instructed to
take care of unexpected events and react as they would in real
situations. There were no unexpected events in the experiment,
because the NHTSA (2013) driving scenario does not include these.
The participants may have ignored the instruction early after a few
trials without unexpected events but with this instruction we
wanted to encourage the participants to observe the road ahead in
a more natural manner than merely observing the speedometer
and the lane position. There were no time limits given for the

completion of the trials. Participants were told not to hurry
completing the search tasks and to take their time and prioritize
the driving task. The driving task proved to be relatively easy and
lane excursions were found to be rare. This also suggests that the
participants were successful in prioritizing the driving task regard-
ing the lane keeping as instructed and that they selected a
cautious strategy for multitasking as assumed in our model.

3.1.4. Data analysis
The in-car glance durations were scored manually frame-by-

frame from the overlaid gaze and eye videos following the SAE-
J2396 (SAE, 2000) definition. For the model predictions, the glance
durations were calculated in a similar manner based on the
predicted eye movements in the simulated task environment.
Only the first five screens of the last two trials were scored for
in-car glance durations, in order to have a data set of absent target
search with four button presses. The first trial was intended for
practice, to reduce unwanted learning effects in the data. The sixth
screen included the search target for the second 12-item trials,
and this is why we selected only the five first screens in trials
2 and 3 per condition (5þ5 screens) under analyses. In order to
compare the fit between the model's predictions and the data,

Fig. 3. The in-car search displays with the Grid and List designs, with 6, 9 or 12 items per screen and the scroll buttons on the right (Experiment 2: scroll buttons left).
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correspondingly 12 simulated absent target searches on 10 screens
each were run for calculating the predicted values. In summary, for
both Grid and List menus, 10 screens with 6, 9, and 12 items per
screen, totaling in 60, 90, and 120 item search tasks were analyzed
and compared between the empirical data and the model predic-
tions with N¼12.

The relevant measures related to the number and duration of the
in-car glances (i.e., glances to the touch display): the total number of
glances, total glance duration, mean and maximum glance duration,
and number and percentage of glances over 2.0 s. The first three
measures are related to the visual demand of in-car tasks, whereas
the latter three are intended to measure safety-critical lapses of
control. Glance durations over 2 s have been associated with
increased risk of safety-critical events in real traffic (Liang et al.,
2012). We wanted to also see if our model can predict the values of
our in-car tasks for the NHTSA (2013) criteria on the total glance
times (max 12.0 s for the 85th percentile), mean glance duration
(max 2.0 s for the 85th percentile), and the percentage of over-2.0-
second glances (max 15% for the 85th percentile).

Even if not in the focus of our current modeling approach, we
also evaluated the relationship of the predicted lane deviation to
the predicted continuous glance metrics to validate the relation-
ship between the long glance durations and deviation in vehicle's
lane position. Our proposed strategy for visual search posited that
drivers could mark attended items to inhibit return to these items,
and that these markers remain even after looking away briefly to
the driving task. This assumption makes the implicit prediction
that items would not be revisited during visual search. In order to
test this assumption, the participants' eye movements on the
display were recorded with a sampling rate of 500 Hz. For each
condition and for each participant, a screen with interrupted
search was randomly selected for closer calculation on revisits
per item (12�6¼72 screens in total).

For statistical analyses, repeated-measures ANOVAs with an
alpha level of .05 were used. For pairwise comparisons, a Bonferroni
correction with SPSS-adjusted significance level of .05 was applied.
In this paper, SPSS's Bonferroni adjusted p-values are quoted, and for
each ANOVA, assumptions of sphericity were confirmed. If the
assumption of sphericity was violated, degrees of freedom were
adjusted with the Greenhouse�Geisser correction. Partial eta-
square and mean differences were calculated as measures of effect
size. In order to evaluate the relationship of the predicted lane
deviation to the predicted glance metrics, we analyzed how total,
mean and max glance duration per screen could predict average lane
deviation per screen of the model simulations with linear regression
models (12�6�10 screens, N¼720).

For testing the goodness-of-fit between model and data, two
measures, RMSSD (Root Mean Squared Scaled Deviation) and r2,
are used. RMSSD was used to evaluate deviation from exact
location whereas r2 is a measure of fit to relative trend. High
values for r2 are important for reliably pointing out the better user
interface alternatives, whereas RMSSD should be small if predic-
tions of passing acceptance criteria are to be made.

3.2. Results and goodness-of-fit

As shown in Fig. 4 for a total of 10 screens, study participants
showed a significant increasing effect of the number of menu items
in the number of in-car glances, F(2,22)¼7.880, p¼ .003, partial
η2¼ .417. The mean difference between 6 item and 12 item tasks was
10.25 glances, p¼ .033, and between 9 and 12 item tasks 6.88
glances, p¼ .012. As expected, the model predicted similar trends.
As the number of items per screen increased from 6 to 9 to 12, so did
the total number of items to be inspected increase from 60 to 90 to
120 for the total of 10 screens. Both the human and model results
reflect the fact that more items simply takemore time to encode and

process. There was also a significant interaction between the menu
type and the number of menu items, F(2,22)¼3.910, p¼ .035, partial
η2¼ .262. For the 6-item tasks, the number of glances was slightly
lower for Grid than for List, whereas for the 9- and 12-item tasks,
the number of glances was lower for List than for Grid. The model
did not show this interaction effect but predicted an overall lower
number of glances for List compared to Grid. No main effect of menu
was found.

The total in-car glance durations in Fig. 5 tell a similar story.
There was a significant effect of the number of menu items on total
glance duration, F(2,22)¼12.765, po .001, partial η2¼ .537. The
mean difference from 6 items tasks to 12 items tasks was 20.74 s,
p¼ .006, and from 9 items to 12 items tasks it was 13.87 s, p¼ .001.
The model predicted the relative trend and the deviation from the
exact location of the data was small, although the model suggested
somewhat lower total glance durations for the List menu structure
than for the Grid. In the experiment, there were no significant
differences between menus or significant interaction effects. Regard-
ing the NHTSA (2013) criteria, none of the tasks would pass the
criterion of total glance time being at most 12 s, as predicted.

The mean in-car glance durations (Fig. 6) were close to the
predictions, although the relative trends were somewhat off. The
number of menu items had a significant effect on the mean glance
durations, F(2,22)¼7.108, p¼ .004, partial η2¼ .393. The mean dif-
ference from 6 items to 12 items tasks was small (160 ms) but
statistically significant, p¼ .005. No main effect of menu was found,
but there was a significant interaction between menu and items, F
(2,22)¼5.187, p¼ .014, partial η2¼ .320. For 6 items tasks, the mean
glance durations were slightly shorter for List than for Grid, whereas
for 9 and 12 items tasks, the mean durations were slightly longer for
List. This could suggest that the participants did take advantage of
the closer distances between the titles in List-9 and List-12 and
encoded more titles per glance than in Grid. In general, considering
what the visual demands of the search task were compared to what
the in-car tasks were like in the 1990s, the mean glance times were

40.0

30.0

20.0

datadata

model

10.0
Grid-6 Grid-9 Grid-12 List-6 List-9 List-12

model

N
um

be
r o

f i
n-

ca
r g

la
nc

es

Fig. 4. Number of in-car glances, scroll buttons right (10 screens, N¼12), r2¼ .672,
RMSSD¼3.261. Bars represent 95% confidence intervals.

60.0

40.0

50.0

30.0

data
20.0

(s
)

ce
 d

ur
at

io
n 

(
l i

n-
ca

r g
la

nc
To

ta
l

data
model

10.00 0
- - - -

Fig. 5. Total in-car glance duration (s), scroll buttons right (10 screens, N¼12),
r2¼ .843, RMSSD¼1.615. Bars represent 95% confidence intervals. NHTSA (2013)
verification threshold illustrated at 12.0 s.

T. Kujala, D.D. Salvucci / Int. J. Human-Computer Studies 79 (2015) 66–78 71



still near 1.6 s, in line with the upper limit of Wierwille's visual
sampling model (1993). As predicted, all the tasks would pass the
NHTSA (2013) criterion of mean in-car glance durations being at
most 2.0 s for 85% of the participants.

Whereas the measures above speak for the average visual
demands of the in-car tasks, the maximum in-car glance durations
and the number of very long in-car glances—representing lapses of
control in visual sampling—provide safety-critical information and
can also be more challenging to predict. Although the observed
maximum in-car glance durations shown in Fig. 7 were shorter
than predicted, there was some similarity in the relative trend. As
predicted, the number of menu items had a significant effect on
maximum glance durations, F(1.333,14.658)¼11.411, p¼ .002, par-
tial η2¼ .509. The mean difference between 6 items and 12 items
tasks was .54 s, po .001. Against predictions, no main effect of
menu was found.

For the safety-critical measure of number of glances over 2.0 s,
the observed effect of the number of menu items was somewhat
stronger than predicted for the List-conditions, in particular
(r2¼ .725, RMSSD¼1.425), F(2,22)¼9.604, p¼ .001, partial η2¼ .466.
This effect was particularly strong for the List condition. The mean
difference between 6 and 12 items tasks was 3.79 glances, p¼ .008,
and between 9 and 12 items tasks 3.29 glances, po .001. SEMs were
large for this measure, which could explain partly the absence of the
expected effect of menu structure. However, there was a significant
interaction betweenmenu and items on the percentage of over-2.0-s
glances (Fig. 8), F(2,22)¼4.138, p¼ .030, partial η2¼ .273. For List-6
the percentage was significantly lower than for Grid-6 whereas for
the 9 and 12 items tasks the Grids had somewhat lower percentages.
Regarding the NHTSA (2013) acceptance criterion, the model pre-
dicted pass for List-6 (percentage of over-2.0-s glances max 15% for
85% of participants) whereas the data suggests that all tasks
would fail.

A closer analysis on gaze revisits per item (for 72 screens in total)
revealed that for the List conditions, there were no revisits at all, and
for the Grid conditions there were a few revisits for 4 participants on
5 screens (G6: 1, G9: 3, G12: 1). In total, only 7% of the searches
included revisits, thus supporting (albeit not decisively) the assump-
tions underlying the model and the notion that, in general, a driver's
visual search is efficient in avoiding revisits on items. In addition, the
assumption that drivers begin search at any item and move their
eyes to the nearest unattended item gained support by visually
inspecting the gaze paths on these screens: systematic top-down or
similar strategies seemed to be rare, and saccades tended to stay
minimal in length and tended to avoid revisiting attended items.

The relationship of the predicted lane deviation of the vehicle to
the predicted glance metrics was analyzed with linear regression
models with a single screen as a sample (12�6�10 screens,
N¼720). Only the maximum in-car glance duration was able to
predict average lane deviation (F(268.338, po .001, β¼ .522,
r2¼ .272, t(718)¼16.381, po .001, 95% CIs [.027,.035]). Total or mean
glance duration did not correlate with lane deviation in a way that
these could be used to predict lane deviation in the simulation. The
finding gives support for the assumed relationship between indivi-
dual glance durations and the driving stability in our model.

3.3. Discussion

In Experiment 1, the model was able to predict the observed
increases in the number of in-car glances as well as in the total in-
car glance durations, as the number of items to be inspected
increased from 60 to 90 to 120 (with 6�9�12 items per screen
across 10 screens). The model, as the embodiment of the search-
while-driving strategy proposed earlier, did well at predicting the
qualitative glance-behavior trends in the empirical data, although
the quantitative predictions were sometimes less accurate. The
model was able to predict the lower number of glances for the
List-9 and List-12 tasks compared to corresponding Grid tasks. The
model suggests that the advantage is due to the shrinking distance
between text labels in the List condition, as opposed to the
distances in Grid condition, which remain farther apart.

In general, the model was able to predict that as the task
durations increase (as seen in the total number and duration of in-
car glances), the mean and maximum glance durations, as well as
the percentage of over-2-s glances, tend to increase as well. The
model was also able to predict correctly an advantage for the List
structure over Grid on the individual glance lengths as the number
of items is at 6. However, the model generally overpredicted the
maximum in-car glance durations. The predicted relative trend for
the increase of maximum glance durations with more items was
generally present in the data, but the expected small difference
between the menu structures was not observed. In addition, the
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observed increase of glances over 2.0 s, as the number of items
increases, was much larger than predicted for Lists in particular.

The detailed gaze data revealing that only 7% of screens included
a few revisits gave support for the assumption of stable markers of
visually attended items. The analyzed data still does not reveal if the
marker span is limited in duration—that is, if the survival of the
markers is dependent on the duration of the interruption. However,
the findings give support for the perseverance of the inhibition of
return mechanism for facilitating visual search on an in-car display
when interrupted by the visual demands of the driving task.

In the model simulations, only the maximum in-car glance dur-
ation predicted vehicle's lane deviation whereas total or mean glance
duration did not. This finding suggests that in particular the long
glances can lead to instability in driving and validates our model
behavior; a long off road glance affects the stability of the vehicle
in our model simulations. However, the relationship in real traffic
between lane deviation and crash risk is unknown, whereas there is a
wealth of evidence of the more direct association between crash risk
and long off road glances (Liang et al., 2012). It seems that in general,
drivers do not try to optimize their lane position while multitasking
and some lateral deviation is allowed even if the driving is prioritized
(Janssen and Brumby, 2010). Keeping the own lane seems to be a
sufficient andmore critical goal than keeping an optimal lane position
at all times, which is why we focus on glance metrics here.

4. Experiment 2: scroll button position

When comparing the findings of Experiment 1 to those of
Kujala and Saariluoma (2011), on the effects of menu structure on
maximum in-car glance durations and overlong glances, the
effects in the present study are much weaker. One possible
explanation is that, in Experiment 1, the lapses of control that
induce long glances seemed to arise from the driver's choice to
complete a subtask before switching task (Bailey and Iqbal, 2008),
where a subtask boundary would be reflected in the pressing of
the down button to indicate completion of one screen of items.
This mechanism is visible in the manually scored videos: the
longest glances were often terminated when the driver pressed
the scroll button after finishing searching a screen. The scroll
buttons were located in Experiment 1 on the right side of the
display (Fig. 3). This position could have undermined the advan-
tage of List menu structure compared to Grid because of the large
distance of the text labels in List to the touch screen button due to
encoding demands no matter to what title the search ends at the
screen. Besides increasing the number of individual long in-car
glances, this scroll button position could have also decreased the
total number of the glances if the participants decided to prolong a
glance instead of investing a dedicated in-car glance for locating
and pushing the button. It seems these types of events were more
frequent in the empirical data than our model was able to predict.

To address these questions raised in the first experiment, we
conducted a second experiment to elucidate whether the earlier
observed difference between the menu structures (Kujala and
Saariluoma, 2011) would be due to the distance of the interaction
elements (text labels and the scroll buttons) on the display. After
Kujala and Saariluoma (2011) an advantage for List over Grid was
expected in the in-car glance durations when the scroll buttons
are positioned closer to the items in the List. This modification in
turn would help in further validating the model's account with
respect to small changes in the secondary task.

4.1. Research method

Experiment 2 repeated the design of Experiment 1 but with
one critical difference: the display's two scroll buttons (up and

down) were positioned on the left side of the screen (see Fig. 3).
This subtle change has differing performance implications for the
two conditions: for List, the decreased distance to these elements
should decrease total encoding and task time, whereas for Grid,
the position of the scroll buttons should not make a significant
difference. With this change in the experimental design, we
wanted to validate that the model would still work even if the
elements of the particular in-car task were slightly modified, and a
relative advantage for List could be expected in the empirical data.
The model with its parameters used for the predictions of Experi-
ment 2 was exactly the same as for Experiment 1.

The driver sample was different than in Experiment 1 but
represented the same demographics. In the statistical analyses of
the empirical data, the sample size was 11 because of missing data
on G12-tasks for one participant due to erroneous selections of
items before the fifth screens in two tasks. Detailed eye move-
ments were not recorded or analyzed in Experiment 2 and the
analyses focused on the glance metrics.

4.2. Results and goodness-of-fit

For this experiment, there was a significant effect of menu
structure on the observed number of in-car glances as expected
(Fig. 9), F(1,10)¼6.657, p¼ .027, partial η2¼ .400. The mean difference
between Grid and List was 4.54 glances, p¼ .027. Again, as expected,
the number of menu items had also a significant increasing effect on
the number of glances, F(2,20)¼32.835, po001, partial η2¼ .767.
The mean difference between 6 and 12 items tasks was 8.95,
po .001; between 9 and 12 items tasks, 4.00, p¼ .007; and between
6 and 9 items tasks, 4.95, p¼ .002. The fit on the relative trend is fair
but the deviation from the exact location is still large.

As expected, there was also a significant effect of menu structure
on the total in-car glance durations (Fig. 10), F(1,10)¼6.961, p¼ .025,
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partial η2¼ .410. The mean difference from Grid to List was 6.53 s,
p¼ .025. For the effect of number of menu items on the total glance
durations (F(2,20)¼69.751, po .001, partial η2¼ .875), the effect size
between 6 and 12 items tasks was 17.30 s, po .001; between 9 and
12 items tasks, 8.42 s, po .001; and between 6 and 9 items tasks,
8.88 s, po .001. Again, none of the tasks would pass the NHTSA
(2013) criterion on maximum total glance time of 12 s, as predicted.

Again, the mean in-car glance durations were close to the 1.6-s
upper limit of Wierwille's (1993) model (Fig. 11). The number of
menu items had again a significant effect on mean glance durations,
F(2,20)¼10.317, p¼ .001, partial η2¼ .508, with the small mean
difference between 6 and 12 items tasks of .197 s, p¼ .003. The
positioning of the scroll buttons on the left side of the menu seemed
to bring down the mean glance durations as compared to Experi-
ment 1 (see Fig. 6). The model was able to predict the increase in
mean glance duration by the number of items but the magnitudes
were off, in particular for Grid. This was probably due to the
overestimated number of glances. In addition, List did not have
the predicted relative advantage over Grid in the data, and there was
no significant main effect of menu or a significant interaction effect.
As predicted, all the tasks would pass easily the NHTSA (2013) limit
of 2.0 s for mean glance duration.

The left-side position of the scroll buttons seemed to slightly
lower also the observed maximum in-car glance durations (com-
pare Figs. 7 and 12). Again, the predicted maximum durations
were significantly higher and the predicted effect of menu struc-
ture did not become visible in the data. The effect of the number of
menu items was this time smaller but still significant, F(2,20)¼
4.295, p¼ .028, partial η2¼ .300. The significant mean difference
between 6 and 12 items tasks was .32 s, p¼ .026.

A significant effect of the number of menu items was observed
on the number of over-2.0-second in-car glances, F(2,20)¼17.330,
po .001, partial η2¼ .634. The significant mean difference between
6 and 12 items tasks was 3.73 glances, po .001; and between
6 and 9 items tasks, 1.86 glances, p¼ .026. There was no significant

main effect of menu but a significant interaction between menu
and items, F(2,20)¼6.997, p¼ .005, partial η2¼ .412. The interac-
tion seems to suggest that Grid is worse for 6 items displays,
whereas List is worse for 12 items displays.

The number of menu items had also a significant effect on the
percentage of glances over 2 s, F(2,20)¼6.473, p¼ .007, partial
η2¼ .393 (Fig. 13). The mean difference from 6 to 9 items tasks
was 7.88% points, p¼ .037, whereas the mean difference between
6 and 12 items tasks was 13.89% points, p¼ .015. There was no
significant main effect of menu but a similar significant interaction
between menu and items as with the number of over-2.0-s
glances, F(2,20)¼5.369, p¼ .014, partial η2¼ .349. The direction of
the relative trend on the number and percentages over 2.0 second
glances was predicted fairly by the model although the magni-
tudes are again somewhat off and the model predicted lower
percentages for List-12 and higher percentages for Grid-12 than
what was observed. In this case, the List-6 task would pass the
NHTSA (2013) criterion on the percentage of over-2.0-s glances
(max 15% for 85% of the participants), as predicted.

4.3. Discussion

Experiment 2 repeated the findings of Experiment 1 but with
better fit on the relative trends. Besides the more obvious effects of
the number of items to encode, this time the List menu structure
gained more advantage compared to Grid in the predicted as well
as observed glance numbers and durations. This advantage was
derived from the placement of the scroll buttons to the left side of
the screen and thus, shorter encoding times, as expected. How-
ever, unexpectedly also the Grid got advantage from this button
placement. This could be due to the reduced distance between the
buttons and the driving environment, as the focus typically shifted
back to driving after a button press.

There are still critical differences between the predictions of
the model and the observations, in particular regarding the safety-
critical maximum in-car glance durations and the numbers of
long, over-2-s glances. The fit on the relative trend for the
maximum glance durations is fair but the predicted maximum
glance durations are much higher than observed, and the observed
differences between the menu structures did not become signifi-
cant with this sample size. These observed differences were also
much smaller than the predicted. What is important to note, the
data tells that the Grid menu structure is worse than List on the
long glances only for the 6-item displays, but on displays with 9 or
12 items, the difference becomes insignificant. The model predicts
advantage also for the List-9 and List-12 layouts compared to Grid.
It could be that the denser layout of the titles in List-9 and List-12
encourages encoding more items per glance than in Grid and thus,
undermining the positive effect of shorter encoding times.
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Also for the over-2-s long safety-critical glances, the observed
interaction effect seems to suggest that Grid is worse for 6 items
displays, whereas List is worse for 12 items displays. However, the
large SEMs could suggest that 9 or 12 items per screen (i.e., 90/120
item tasks) are too much for these types of in-car search tasks,
regardless of the menu structure. What is important, both the data
and the model suggest consistently that the List menu structure
with 6 items, with scroll buttons near the items, may be advanta-
geous with respect to drivers' visual sampling performance.

5. General discussion

In this paper, we investigated how drivers perform visual sam-
pling while driving, focusing on various effects of Grid versus List
layouts and the number of menu items on an in-car touch display.
The central question explored is how drivers share visual resources
temporally between the search and driving tasks. Both the empirical
study and the general visual sampling strategy proposed in this
paper offer explanations for the empirical findings in several ways.

5.1. General findings and implications

The empirical data as well as the model seem to suggest that
increases in in-car task duration may not only increase the total
number and duration of the in-car glances, but may also increase
the individual glance lengths—a critical result given the potential
hazards of long in-car glances while driving. This effect has been
observed in previous studies (e.g., Lee et al., 2012; Kujala and
Saariluoma, 2011) but a theoretical explanation for the effect has
been lacking. Our proposed strategy and model seem to offer a
plausible explanation for this phenomenon, as described below.

The findings indicate that as the number of on-screen items
increases, the task time increases proportionally, with higher total
in-car glance duration and larger number of in-car glances. The
higher total glance duration is a basic set size effect and this is
what our model predicts. The number of glances increases in our
model because of the time limit for a single in-car glance. Drivers
seem to interleave search and driving efficiently in general, in the
sense that mean in-car glance durations are kept well below the
threshold of 2.0 s that is linked to increased crash risk in real
traffic (Liang et al., 2012). A plausible explanation is that they
succeed in this by using their perception of time to determine
when their searching has reached a temporal “limit” at which time
they must switch back to driving.

Due to the upward adjustment of the time limit after each in-
car glance when the driving stays stable, the longer the task
(i.e., the more in-car glances), the higher and riskier the time limit
is able to grow during an in-car search task (more upward
adjustments can be made). Because of the inbuilt delay and noise
in the human time perception mechanism (Taatgen et al., 2007),
larger time limits translate to a greater chance of overlong glances.
The dynamic adjustment of the time limit following the model of
Wierwille (1993) together with the inbuilt delay and noise in the
human time perception mechanism might also explain some of
the variance in the observed in-car glance durations in studies of
in-car multitasking in highly controlled driving scenarios (e.g.,
Horrey and Wickens, 2007).

The List structure has an advantage regarding total glance time
and the total number of glances over Grid, in particular when the
scroll buttons are close to the List of items and the number of items
increases. Our model is able to predict this and the effect can be
explained by the titles being closer to each other in List, reducing

encoding time from an item to the next in the assumed nearest
uninspected item next search strategy. The empirical findings give
support for one of these key assumptions of the search strategy;
when performing search in unordered menus while driving, drivers
seem to be able to inhibit return to already visited items. Only a
few of the randomly selected screens included gaze revisits on
visited items.

The data as well as our model suggest that the List-6 alternative
is the least distracting in terms of the safety-critical long in-car
glances in any case. The List-6-task with 60 search items in total is
possible to be conducted in such a small number of glances (in
particular when the scroll buttons are placed left near the titles and
the driving view) that the time limit will not grow as high as with
the other menu structures. Our model suggests that the advantage
of List-6 over Grid-6 with the same total number of items and with
scroll buttons close to the items is caused by the decreased distance
between the search items in the list-style menu compared to the
Grid-style menu, and thus, lower total task durations and total
number of glances.

The model and the data seem to indicate that the placement of
the scroll buttons to the left-hand side of the display decreases the
mean and maximum glance durations, as well as the number and
percentages of over-2.0-s in-car glances compared to the right-hand
side (for both List and Grid). Our model is able to predict this in
particular for the long glances towards the List menus. The advantage
of placing the scroll buttons to the left in the List condition arises
from their proximity to the titles for reducing encoding time for
screen change. In addition, for both menus, left-side buttons decrease
the length of the shift of visual attention from the display to the
driving scene after a screen change. It might be noted, however, that
this effect may be mitigated or eliminated with practice if the touch
screen scroll buttons were replaced with physical buttons, freeing
visual resources (e.g., Burnett and Porter, 2001).

Regarding the NHTSA (2013) criteria for in-vehicle electronic
devices, the List-6 with scroll buttons next to the list items was the
only task in our studies that would have passed the maximum 15%
rate of glances over 2 s. The model was able to correctly predict
this result. None of the tasks would have passed the criterion for
total glance time (maximum 12.0 s) and all tasks would have
passed easily the criterion for mean glance duration (maximum
2.0 s). The outcomes on total glance times are not as demanding to
predict as the first one because the total glance times can be
estimated with basic tools that utilize knowledge of human visual
processing, such as GOMS (Card et al., 1983) and SAE-J2365 (2002).
The pass of all in-car tasks on the mean glance duration criterion is
not either hard to predict because according to Wierwille's (1993)
visual sampling model, drivers try to keep the mean in-car glance
durations below 1.6 s in all traffic scenarios. More recent studies in
simulators as well as in the field (as well as our current experi-
ments) have indicated that for some reason the mean in-car glance
durations are still kept between 500 and 1600 ms regardless of the
type of the in-car task. For example, the naturalistic driving study
with a sample of 100 drivers by Klauer et al. (2006) indicated
similar in-car glance duration distributions.

The empirical results illustrate that the visual design of in-car
displays can have a significant impact on the potential for visual
distraction. Task length and the spatial separation between inter-
action elements, especially those encoded sequentially, arise as
two of the critical factors for the probability of in-car glances to
exceed the safe glance limits in this context. The findings suggest
that visual designers should try to minimize task duration as well
as the durations of all visual encoding steps required for the in-car
task. This means, for example, that the number of available menu
items should be limited and that the distance between interaction
elements encoded one after another in a task sequence should be
minimized to a level where clutter is still avoided. Given a pro-
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longed search task, an extended estimate of a safe in-car glance
duration, inaccuracy in driver's time perception ability, and a
longer individual encoding step near the end of a glance, milli-
seconds can truly matter in this context (Gray and Boehm-Davis,
2000). The idea of minimizing visual encoding steps relates to the
idea of Janssen et al. (2012) of providing shortest possible “action
sets” and thus, natural break points to encourage task switching
and reduce distraction by secondary tasks. In short, shorter visual
encoding steps should give more room for break points.

5.2. Limitations and further research

Our current understanding of drivers' visual sampling strategies
in the model has several limitations. It overestimates somewhat the
number of in-car glances per task in general. A plausible explanation
is that the human drivers preferred to extend a glance to press a
scroll button as a natural break point for a task switch even if the
time limit was close or passed (Janssen et al., 2012), whereas our
model tended to move attention back to driving immediately after
exceeding the time limit. The underestimated number of overlong
glances for List menus supports this explanation in particular when
the scroll buttons were farther away from the items (Experiment 1).
It is also possible that the human drivers were able to encode more
titles per fixation than that of the model, giving similar fixation
durations per title and thus similar total glance times, but with the
model splitting the encoding steps into greater number of fixations
and thus greater number of glances. Ojanpää et al. (2002) have
shown that, for vertical lists in particular, the word identification
span covered with a single fixation could be even 4–5 words, but this
increases fixation (i.e., encoding) time compared to a single word.

The model predicted somewhat greater relative disadvantage for
the Grid than what was observed. One plausible explanation is the
local density effect (Halverson and Hornof, 2004), which suggests
that people spend less time per word searching sparser layouts as
opposed to denser layouts. It could also be that the denser layout of
the titles in List-9 and List-12 encouraged encoding more items per
glance than in Grid. This is a possible strategic choice that is not built
in our current model. Besides the higher number of items to encode,
there may be additional set-size effects related to the difficulty of
discriminating and/or encoding the stimuli (see, e.g., Palmer et al.,
2000), which are not currently represented in the model.

Another limitation relates to having in-car search tasks of varying
complexity. Some tasks may result in cognitive capture (Blanco et al.,
2006) or might have other properties than the task used here, such
as reading news or Facebook posts, or tasks with multiple decision-
making elements. Other search tasks might evoke the central menu
performance phenomena as well as directed search strategies (see
Bailly et al., 2014), whereas we have considered exhaustive visual
search only with target absent and in unordered menus. The items
changed for each screen per task, and thus, no practice effects were
incorporated in the model. The timing and control of eye movements
has been found to be highly adaptive to varying tasks and demands
(Sims et al., 2011), and the learning effects associated with different
types of ordered and static menus should be modeled. Here, our
main focus and contribution was on the model of drivers' gaze
allocation and timing strategy between the primary task of driving
and a secondary in-car task. We expect that this strategy should be
generalizable across in-car tasks but certainly this generalizability
needs to be better understood. The strategy and the cognitive model
based on it can be easily extended to evaluate other types of in-car
task layouts, but each in-car task requires a specific task model.

Yet another limitation is the simplicity of the driving scenario:
although we have used the standard and fairly simple NHTSA
(2013) testing scenario which can help elucidate specific beha-
viors, it remains to be seen how these strategies would generalize
to more complex and more realistic driving scenarios. However,

increase in driving task demands, such as using a curved road,
should affect the stability of the vehicle, which should reduce the
maximum time limit available for an in-car glance in our model.
This behavior would correspond to the visual sampling model of
Wierwille (1993), suggesting that drivers reduce individual in-car
glance durations according to the demands of the driving task.

Future studies of visual sampling while driving will also need to
take into account drivers' individual differences and individual task
and time-sharing strategies that can be seen in the eye-tracker's
video data. Janssen and Brumby (2010) have shown that people
sometimes strategically control the allocation of attention in multi-
tasking to meet specific performance criteria. For our purposes, for
example, one might imagine strategic tradeoffs between stable
driving and finishing a screen by a slightly longer in-car glance than
the current time limit would allow, as discussed above. The stability
parameter in the model could be adjusted for accommodating
individual differences in these priorities as in Distract-R (Salvucci,
2009). The model seems to overestimate the maximum glance
durations in particular for Grid and for the higher number layouts
(9 and 12). This could suggest that there is some additional chunking
strategy in work, limiting the maximum time limit for a single in-car
glance (Janssen and Brumby, 2010).

Besides the cautious strategy of resetting the glance time limit
always back to the lower limit of 500 ms by Wierwille (1993) after
each instance of instable driving, another plausible strategy would
be to retrieve the latest successful time limit and reset there. As in
Salvucci et al. (2006), this would simulate behavior of the driver
trying to determine on the basis of accumulating experience the
optimal (the longest safe) length of in-car glance duration depend-
ing on the visual demands of the particular driving scenario. More
stable factors, such as driving experience (Wikman et al., 1998)
and the tolerance of uncertainty (Furnham and Marks, 2013), may
also provide an avenue for understanding how individual drivers
determine their particular point in the space of tradeoffs.

Uncertainty, event expectancies, internal task state estimates
(Johnson et al., 2014; Wickens, et al., 2001; Senders et al., 1967),
and saliency, as well as the expected effort and value (reward) of
gathering visual information from a particular source (Sullivan
et al., 2012; Wickens, et al., 2001) can certainly play a role in driver
multitasking behavior and may provide alternative venues or
improve the current model for explaining the empirical findings.
The current model is based on the theory of threaded cognition in
multitasking by Salvucci and Taatgen (2008) and does not require
modeling of uncertainty or internal task state estimates (for now
at least) or an explicit central executive process in multitasking
situations; instead, a straightforward “threading” mechanism
suffices to interleave the resource processing between tasks.

Beyond developing a better understanding of how drivers per-
form in-car visual search, we would also like to incorporate this
knowledge in computational tools that help to quantify and use this
knowledge. Specifically, design tools such as Distract-R (Salvucci,
2009) are currently capable of predicting drivers' performance on
defined tasks with a particular in-car user interface; further knowl-
edge of visual in-car sampling can greatly augment the functionality
of such systems. The predictions of these tools would ideally be used
in conjunction with standard experimentation as well as broader
guidelines (e.g., NHTSA, 2013). Our hope is that these systems
ultimately help pinpoint the distracting visual features of in-car
display designs, and thus, in guiding the visual designer in creating
better and safer user interfaces for multitasking behind the wheel.
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Appendix A. Example of search targets and the orders of tasks
(for participant P02)

of
items

Search target Target screen/position of the
target on the screen

Grid

12 Bad clues 2/8.
Deafening feelings 6/10.
Hospitality to make
you cry

7/8.

6 Silver restrictions 4/2.
Promises are just a
start

12/4.

Ruin is the best 14/2.
9 Accusation of the

century
3/2.

Imitations are for
girls

8/7.

Beautiful nature 9/8.

List
12 Modern distractions 2/8.

Summer dreams 6/10.
Frowns from hell 7/8.

6 Feelings for a dollar 4/2.
Giving Em scandals 12/4.
Ideas flashing
before me

14/2.

9 Karma moves 3/2.
Giving Em scandals 8/7.
A flash of wisdom 9/8.
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