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Abstract

For the estimation of user interruptability in wearable
and mobile settings, we propose in [8] to distinguish be-
tween the users’ personal and social interruptability. In this
paper, we verify this thesis with a user study on 24 subjects.
Results show that there is a significant difference between
social and personal interruptability. Further, we present a
novel approach to estimate the social and personal inter-
ruptability of a user from wearable sensors. It is scalable
for a large number of sensors, contexts, and situations and
allows for online adaptation during run-time. We have de-
veloped a wearable platform, that allows to record and pro-
cess the data from a microphone, 12 body-worn 3D acceler-
ation sensors, and a location estimation. We have evaluated
the approach on three different data sets, with a maximal
length of two days.

1 Introduction

Today’s computer and Ubicomp systems are often an-
noying since they interrupt users at the most inappropri-
ate moments. Interruptions may come from a wide variety
of sources, such as email notification, incoming cell-phone
calls or simply a system message that the network connec-
tion has failed. A major problem in our opinion is that those
systems do not model and recognize the user’s current con-
text and situation in order to estimate his interruptability.
This is of special importance in today’s and future mobile
systems, where such interruptions may occur in any situa-
tion and from an increasing number of sources. In this paper
we explore the example application of interruptability esti-
mation for a wearable notification system.

There is always two sides to a notification: a cost and a
utility. While the utility mainly depends on message type,
sender, content, and importance, the cost mainly depends on

the interruptability of the user. In this paper we concentrate
on estimating the user’s interruptability, since the estimation
of the message utility is a research topic on its own.

Previous related work mainly concentrates itself on in-
terruptability estimation in office settings [5, 2, 4] or highly
specialized settings, such as Military Command Control
[11] or Space Shuttle Monitoring [3]. They often model
the interruptability as a uni-dimensional variable, eg. ’in-
terruptible’ vs. ’non-interruptible’. Considering mobile and
wearable settings, where an interruption may occur at any
time in any situation, we previously proposed [8] to distin-
guish between the personal and social interruptability of the
user. We define the personal interruptability to be the inter-
ruptability of the user. The social interruptability indicates
the interruptability of the user’s environment. This differ-
entiation is introduced for context-aware notification on a
wearable computer, where notifications such as a loud beep
not only interrupt the user but also the social environment
of that user. We depict the interruptability using the two-
dimensional interruptability space (see Figure 1).

This paper has three principal contributions: firstly, we
conducted a user study to lend support to the necessity of
distinguishing social and personal interruptability (see Sec-
tion 2). Secondly, we propose a novel, scalable approach
for estimating the user’s interruptability (see Section 3), that
overcomes several restrictions our previous algorithm had.
For one, we employ an unsupervised learning mechanism
to extract low-level context from acceleration, audio and a
location sensors. This unsupervised learning can be done
incrementally – and therefore online – making the system
scalable and adaptive to novel situations. We compare the
novel approach against the previous one and evaluate it on
two sets of data of 3.5h and 2 days length respectively (see
Section 5). As the third contribution, we have developed a
hardware platform that allows to record, process, and an-
notate data from 12 3D acceleration sensors, a microphone
and a location sensor in online and in realtime (Section 4).
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Figure 1. Social and Personal Interruptability
for Various Situtations

2 Human Interruptability: An experimental
Study

The validity of the model presented in the introduction
was investigated in an experiment using a set of videos of
47 prototypical situations. These situations were selected to
provide a diverse sample of everyday situations. For each
5-second situation movie clip, participants rated how much
it would disturb them to receive a phone call if the phone
was set to ring or set to vibrate (assessment of personal in-
terruptability). In addition, participants had to indicate how
much they believe it would bother the people in the environ-
ment, if their phone rang audibly (social interruptability).
Note that the modality (ring vs. vibration) is very important
for testing the degree of independence of these two dimen-
sions. If the phone rings audibly, it is reasonable to assume
that personal and social interruptability would be relatively
well correlated, because the ring tone does of course affect
the social environment as well. Testing the degree of inde-
pendence of these two dimensions would be more valid if a
modality is used for assessing personal interruptability that
does not alert the social environment automatically. This
is fulfilled when the phone is set to vibrate. Therefore, the
interesting correlation is between ratings of personal inter-
ruptability when the phone is set to vibrate and social inter-
ruptability when the phone is set to ring.

Method and Procedure. 24 students from either the
computer science department of ETH Zurich or the psychol-
ogy department of the University of Zurich participated in
the study. Half of the participants were female. The mean
age of participants was 24.6 years (stdev. 4.1 years). 23 of
the 24 participants reported to own a mobile phone. The ex-
periment was conducted using a personal computer running
Windows XP with the screen resolution set at 1280x1024
on a TFT screen. A Java program was written to display

Figure 2. A screenshot of the program used
for the Experiment. Below the video there are
3 sliders to assess the interruptability, and a
“next” button to start the next video.

the videos and to accept the users answers (see Figure 2).
The Program covered the full computer screen, except the
windows task bar. The videos were recorded using a digital
video camera. All scenes always depicted the same actor
during routine activities. From the video recording we ex-
tracted a total of 94 different 5-second videos. These con-
sisted of 2 different instances of 47 different prototypical
situations. We chose the situations to best possibly sample
the interruptability space to our own belief. The situations
varied between: looking at shop windows, sitting in a nice
restaurant, listening to an interesting lecture, and studying
in the universities library, amongst others. For each video
the participants had to provide a rating for each of the three
following questions using graphic rating scales (on a scale
from little – value 0 to much – value 1):

• How much does it disturb you, if you receive a phone
call in this situation? (Mobile phone rings audibly)

• How much does it disturb you, if you receive a phone
call in this situation? (Mobile phone vibrates, you no-
tice it)

• How much does it disturb your environment, if you
receive a phone call in this situation? (Mobile phone
rings audibly)

The first two questions assess the participants personal
interruptability, depending on the means of notification.
The third question assesses the participants social interrupt-
ability for one specific modality. The independent variable
situation was randomized. 47 different situations and 2 rep-
etitions per situation were used. This results in 94 trials per
participant, which took about half an hour to complete.

Results. For each participant we calculated the correla-
tion between ratings of personal interruptability when the
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Figure 3. Modalities personal-vibra vs. social-
ring. Each point represents the annotation of
one person for one situation. Axes run from
0 – not interruptable to 1 – highly interruptable

phone was set to vibrate and ratings of social interruptabil-
ity when the phone was set to ring (individual correlation
values). On average, a correlation of r = .40 was found
(stdev = .28), which is consistent with the assumption of
two relatively independent dimensions for personal vs. so-
cial interruptability. As depicted in the scatter plot in Figure
3, the different situations used in the experiment did sample
the interruptability space relatively well.

These results were different, when participants had to
rate personal interruptability assuming that the phone was
set to ring. In this case, personal and social interruptability
were much higher correlated (mean r = .79, stdev = .19).
Apparently, many participants assume that in this case the
environment is disturbed to a similar degree as they feel be-
ing disturbed themselves. The scatter plot depicted in Fig-
ure 4 shows the associated changes in the interruptability
space. As indicated by the standard deviations of individ-
ual correlation coefficients, substantial differences between
people were observed in both cases. It would therefore be
interesting for future studies to investigate which personal-
ity variables or even other variables such as gender can pre-
dict the degree of independence of personal and social inter-
ruptability. Such results could also provide important infor-
mation for the estimation of settings of individually adapted
notification systems. For example, preliminary analysis of
the present study suggest that the correlation between per-
sonal and social interruptability might be generally higher
for men than for women (r = .84 vs. r = .73 for same modal-
ity and r = .44 vs. r = .37 for different modality).

Discussion. The results presented above show that there
is a significant difference between personal and social inter-
ruptability. Especially when regarding modalities that make
it possible to choose whether the whole environment or just
oneself is interrupted. Interestingly, the study shows that
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Figure 4. Modalities personal-ring vs. social-
ring. Each point represents the annotation of
one person for one situation.

there are differences amongst people in the way they assess
personal and social interruptability. This fact speaks in fa-
vor of having a personal interruptability estimation system
that adapts to the user’s preferences.

3 Interruptability Estimation from Sensors

In [8] we have introduced an algorithm for estimating
the users’ personal and social interruptability from data ob-
tained from wearable sensors. It combines low-level con-
text information using tendencies to obtain an estimate of
the interruptability. The low-level context is based on one
acceleration, an audio, and a location sensor. Every sensor
is classified into about 5 classes, e.g. ‘walking’ for the ac-
celeration sensor. The tendencies indicate the likelihood of
the interruptability for every position in the space for ev-
ery sensor. The tendencies are weighted using the recogni-
tion score of the low-level contexts and added together. The
maximum within the interruptability space then indicates
the users’ current interruptability.

This approach has three principal limitations: firstly
the low-level contexts are recognized using classifiers that
are trained in a supervised manner. This requires labor-
intensive acquisition of labeled training data, and thus lim-
its the extensibility towards new contexts. Furthermore,
it is not possible to recognize contexts that require more
than a single sensor modality. Secondly, the tendencies
are hand-crafted – a labor-intensive and tedious work that
has to be repeated every time a new context or sensor is
added. Thirdly, the tendencies are modeled as uni-modal
Gaussians, an assumption which is not necessarily true.

We present here two novelties to this approach: by mod-
eling the tendencies in a non-parametric way we avoid the
uni-modality restriction and also allow for direct learning of
the tendencies. By clustering the sensor data, we also ob-
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tain the low-level contexts automatically. Combining both
measures, the novel approach learns low-level contexts fully
unsupervised, and thus scales for a large number of con-
texts and situations, and also allows for online learning and
adaption of the system during runtime. The new approach
is compared to our previous algorithm using the same data
set and error measure.

3.1 Learning Multi-Modal Tendencies

We represent the tendencies in a non-parametric way
in order to overcome the unimodality limitation of the
Gaussian tendencies. We therefore divide the interrupt-
ability space in bins b(x̂, ŷ) at a given resolution, where
(x̂, ŷ) refers to the (two-dimensional) bin number. A non-
parametric tendency T̂ (x̂, ŷ, s) maps a constant value to ev-
ery bin. With a sufficiently fine resolution of the grid, we
can represent arbitrarily complex tendencies.

Using such tendencies, we can calculate the sensor esti-
mate for every bin, over all sensors (with recognition score
l(s, t)):

ŜE(x̂, ŷ, t) =
∑

s

T̂ (x̂, ŷ, s) · l(s, t)

The actual interruptability can then be found by selecting
the bin with the highest value from the sensor estimate.

Learning. Given a set of low-level context readings and
the corresponding ground truth, the tendencies can be esti-
mated using standard optimization techniques. The ground
truth is given as a single point (x, y) in the interruptability
space. In order to allow for small variations, we blur the
ground truth to the bin (x̂, ŷ) and its adjacent bin using a
Gaussian function with variance σ. This gives us for every
time step t a ground truth grid g(x̂, ŷ, t).

Given the ground truth grid and the sensor readings,
we obtain a linear equation for every bin and time step:∑

s T̂ (x̂, ŷ, s) · l(s, t) = g(x̂, ŷ, t). Using the equations of
all time steps, this represents an over-determined system of
linear equations that can be solved using least-squares.

3.2 Finding Low-Level Context Automatically

In our previous approach, low-level contexts were ex-
tracted using classifiers that were trained in a supervised
manner from the data of a single sensor each. To overcome
the necessity of labeled training data, we extract them auto-
matically by clustering the sensor data.

We concatenate the feature vectors of the different sen-
sors to form a long d-dimensional vector. We then perform
a k–means clustering on the concatenated feature vectors,
which returns k cluster centers in the d-dimensional space.
In order to keep as much information as possible, the vector
of k distances to the k cluster centers is used as new feature

Variant Social
Inter.

Personal
Inter.

Hand-crafted tendencies
Low-level contexts from super-
vised training

86.0 % 96.2%

Learned Tendencies (6x6 bins)
5-fold cross-validated
Low-level contexts from super-
vised training

92.72 % 97.75 %

Learned Tendencies (6x6 bins)
5-fold cross-validated
Low-level contexts automati-
cally found (20 clusters)

91.0 % 97.4 %

Table 1. Comparison of Recognition Scores
for 3 Algorithmic Variants

vector. Again, this model allows incremental extension of
the model during run-time of the system, simply by reclus-
tering the data to form new low-level contexts.

3.3 Evaluation of the Novel Approach

We have compared both the original and novel ap-
proaches against each other using the original data set from
[8]. This data set contains a 37 min. recording from a sin-
gle biaxial accelerometer, a microphone, and a location es-
timate from the closest WLAN access point. It contains a
walk on the street, (part of) a lecture, a visit to a restaurant
and several conversations. The performance numbers given
in table 1 indicate the percentage of the time where the re-
sult is in the right bin or one of its adjacent bins (using a
6x6 grid), a comparable error measure to the previous one.

As a first observation, we see that the assumption of
unimodality does not hold. Figure 5(b) shows the tenden-
cies that were automatically learned from the low-level con-
texts used previously. Even more, the tendencies are not
all non-negative, i.e. there are parts, that ‘punish’ certain
areas. Thus, the recognition scores are with 92.72% and
97.75% for social and personal interruptability higher with
only 86% and 96.2% respectively (see Table 1).

Table 1 summarizes the recognition scores for the orig-
inal system and our novel approach on the original data
set. Comparing the automatically found low-level contexts
(third row) and the manually trained ones (second row),
we find that the former perform only marginally worse
(91%/97.4% instead of 92.72%/97.75% for social and per-
sonal interruptability, respectively). However, they still per-
form better than the original results. Given the fact, that
these contexts are found in a completely unsupervised man-
ner and the approach thus scales to a large number of con-
texts, this small performance penalty is acceptable.

4

Proceedings of the Eighth International Symposium on Wearable Computers (ISWC’04) 
1530-0811/04 $ 20.00 IEEE 



0 1 2 3
0

1

2

3
Sitting

0 1 2 3
0

1

2

3
Standing

0 1 2 3
0

1

2

3
Walking

0 1 2 3
0

1

2

3
Upstairs

0 1 2 3
0

1

2

3
Downstairs

0 1 2 3
0

1

2

3
Conversation

0 1 2 3
0

1

2

3
Restaurant

0 1 2 3
0

1

2

3
Street

0 1 2 3
0

1

2

3
Lecture

0 1 2 3
0

1

2

3
Other

0 1 2 3
0

1

2

3
Location: Office

0 1 2 3
0

1

2

3
Location: Lab

0 1 2 3
0

1

2

3
Outdoor

0 1 2 3
0

1

2

3
Location: Lecture Hall

0 1 2 3
0

1

2

3
Location: Cafeteria

(a) Hand-crafted Gaussian Tendencies (white denotes 0, black 0.2).

0 1 2 3
0

1

2

3
Acc: S itting

0 1 2 3
0

1

2

3
Acc: S tanding

0 1 2 3
0

1

2

3
Acc: Walking

0 1 2 3
0

1

2

3
Acc: Up stairs

0 1 2 3
0

1

2

3
Acc: Down stairs

0 1 2 3
0

1

2

3
Audio: C onversation

0 1 2 3
0

1

2

3
Audio: R estaurant

0 1 2 3
0

1

2

3
Audio: S treet

0 1 2 3
0

1

2

3
Audio: Lecture

0 1 2 3
0

1

2

3
Audio: Other

0 1 2 3
0

1

2

3
Location: Office

0 1 2 3
0

1

2

3
Location: Lab

0 1 2 3
0

1

2

3
Location: Outdoor

0 1 2 3
0

1

2

3
Location: Lecture Hall

0 1 2 3
0

1

2

3
Location: C afeteria

(b) Automatically Learned Tendencies on a 30x30 Grid (white de-
notes -0.22, black 0.4.).

Figure 5. Hand-crafted and automatically learned tendencies
4 Platform

As the basis for our further research, we have devel-
oped a hardware and software platform that allows both for
recording of a large number of data streams, for their on-
line processing, and online annotation (see Figure 6(a)). It
allows for entire days of operation: not only does it sup-
ply sufficient battery power, but it is also easy enough to
put on and comfortable and unobtrusive to wear. Using a
wrist-worn display it permits to annotate data online with-
out introducing a bias into the data.

Main Unit. The main unit of our platform is a Charm-
IT Pro wearable computer, a Linux system with a hot-
pluggable battery-driven power supply. It provides many
serial and USB ports for attaching sensors, but little built-in
IO, such as keyboard or display, that would not be useful in
a backpack. We use a MicroOptical HMD and a Twiddler
for easy access (without having to take the computer out of
its bag).

We use the CharmITPro’s power supply as the central
power supply for our entire platform. Our experiments
show that the systems runs continuously for 6 hours on a
single set of batteries. Since they are hot-plugable, the sys-
tem can well be used for recordings over long periods of
time.

The entire system has been packed in a backpack, mod-
ified to accommodate all components and for easy wearing
and putting-on. The batteries are stored on the outside of
the backpack, and cable channels allow to place cables and
sensors. Holes in the outer fabric allow for ventilation.

Directly attached to the main unit are a microphone with
a USB audio device and a wireless LAN adapter. The
microphone is attached to the chest strap of the backpack
and records both the voice of the user and environmental
sounds. The wireless LAN adapter both provides network
access and a rough location estimate.

Acceleration Sensors. The platform supports 12 3D ac-
celeration sensors, based on the work of Kern et al. [9].
They are attached to both shoulders, elbows, wrists, hips,
knees, and ankles. Figure 6(a) shows where the nodes are
placed. The 12 sensors are grouped into two groups of six
sensors each. Each group of acceleration sensors is attached
to one Smart-It [1]. The shoulder and hip sensors are kept in
the cable channels that are sown to the backpack. The sen-
sors for arm and wrist, and knee and ankle respectively, are
wired through a single pluggable cable to the Smart-It. This
allows to wear the sensors underneath clothing and easily
connect them to the backpack worn above the clothing.

Wrist-Worn Display for Data Annotation. We use a
small LCD panel with built-in touch panel, worn on the
wrist of the user, as annotation device. It provides quick and
easy interaction-at-a-glance, comparable to a wrist watch.
This is essential for efficient and sensible data annotation,
especially for long recordings.

A simple and quick solution to annotating data is, espe-
cially for long recordings, crucial for two reasons: firstly,
a clumsy annotation device can introduce considerable bias
in the data (Kern et al. [9] report that annotating data us-
ing a Compaq iPAQ introduced considerable bias in their
data). Secondly, for long recordings it becomes impossi-
ble to get continuous annotation of the data, simply because
users cannot concentrate long enough. It is therefore neces-
sary to resort to experience sampling techniques [6, 4, 5, 2].
These require simple and quick interaction with the user in
order to be the least obtrusive possible.

The display we use provides a resolution of 64x128 pix-
els and a 5x3 field touch panel. It is attached to the main
unit via a standard serial line. Further, it is programmed us-
ing simple escape sequences. This allows to write standard
C/C++ programs to control the interaction over the display.
It is mounted inside a small box that can be strapped to the
user’s wrist. Figure 6(b) shows the display attached to the
user’s wrist.
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Figure 6. The Hardware Platform
Our annotation application allows the user to annotate

his current interruptability and also to control the record-
ing. Figure 6(b) shows a screen shot of the application. The
interruptability space on the left hand side can be used to
annotate the user’s interruptability. The buttons on the right
hand side allow to start and stop the recording (using the
‘start’ button) and to clear all annotations (using the ‘X’
button).

Software. The software for our system has to cope with
multiple streams of data, which can be used in very different
compositions for different usage modes. Each sensor pro-
duces a stream of data. These streams have to be handled
differently, depending on the current usage mode of the sys-
tem. For mere recording, it is sufficient to write them into
a file. For online recognition, features have to be extracted
and classified. For debugging purposes it is desirable, that
these streams can not only come directly from the sensors,
but also be read from files.

To make the system easily adaptable to such different
usage modes, we implemented a streaming framework that
can easily be reconfigured to adapt to new requirements.
Each processing step, such as extracting features from a
window of audio data, is encapsulated in a building block.
These are connected among each other at run time, using a
concept similar to UNIX pipes. Central units ensure proper
start/stop of the data streams in-between the different build-
ing blocks.

5 Experiments
We have validated our approach experimentally on two

data sets. The first consists of two recordings of continu-
ously annotated data with a combined length of 3.5 hours.
The second consists of two days of 8 hours in which we
have 54 samples of the user’s interruptability.
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Figure 7. Comparison of sensor combina-
tions (‘acceleration’ implies all 12 sensors)

Experimental Setup. To show the performance of our
system we have recorded a set of 3.5h of data in two parts
of 1h 23min and 2h 06 min each. The data was continu-
ously annotated (online) using the wrist-mounted display.
The first part contains a walk from ETH’s CS to its EE de-
partment (10min) and back (5min) with a detour via the li-
brary (10min) and the student restaurant (10min). The user
had several discussions on the way to and at the EE depart-
ment. The second part contains the author working in his
office (10min), having a short bike ride (20min) and then
going to dinner with 3 colleagues in a restaurant (1h in the
restaurant, 20min for the way back and forth).

The audio features are 10 cepstral coefficients, computed
over 30ms windows and averaged over 1 second. The aver-
age and variance over one second were used as the features
for every acceleration sensor. The closest wireless LAN ac-
cess point was sampled every second as location estimate.
By concatenation of these three vectors we obtain a feature
vector every second. All experiments use a resolution of the
interruptability space of 6x6 and blur the ground truth with
a Gaussian of variance 0.5. All results are obtained using
50 automatically extracted low-level contexts. All results
are 5-fold cross-validated. We use the same error measure
as in Section 3.3.

General Results. As a first evaluation we have com-
puted the recognition results for every single sensor and all
possible combinations (counting all acceleration sensors as
a single one). Figure 7 summarizes these results.

The first important result is, that the algorithm performs
similarly on this data set as on the one used in our previous
work (Section 3) when using all sensors (see the right-most
set of bars in Figure 7). The recognition score of the social
interruptability is 4.5% higher (97.2% instead of 92.7%),
while the score for the personal interruptability has dropped
by about the same rate (90.5% instead of 97.7%). Even
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though the score of the personal interruptability is lower,
these are very good results, considering that the data set is
considerably longer (3.5h instead of 37 min) and more com-
plex.

In general the recognition of the personal interruptability
seems harder than that of the social interruptability. We be-
lieve that the personal interruptability changes more quickly
than the social interruptability and is thus harder to recog-
nize. Another issue is that a change in the personal inter-
ruptability is not necessarily reflected in the output of sen-
sors such as audio, acceleration, and location. Introducing
sensors that measure the state of the user, such as galvanic
skin resistance, heart rate, etc., could alleviate this problem.

When comparing the performance of single sensors each
among each other, acceleration clearly performs best, with
96.3% and 89.5% for the social and personal interruptabil-
ity, respectively. Audio gives a relatively low performance
of only 77.9%/76.1% for social and personal interruptabil-
ity. Location performs well with 90.3% for the social inter-
ruptability, but has the lowest score among all three for the
personal interruptability (75.7%).

Considering combinations of sensors, obviously
the combinations acceleration+location and acceler-
ation+audio perform best, acceleration+audio giving
slightly better results (97.1%/90.4% instead of 96.7%/89%)
The combination audio+acceleration seems to level out
the performance of the two single sensors: together, they
perform slightly better than each of the single sensors alone
(80.8%/81.6%). However, the good performance of the
location sensor for the social interruptability is equally
leveled out. This could be because audio has more weight
due to the larger number of features (10 instead of 1).

The combination of all three sensors still performs best.
However, the results are only slightly better than the combi-
nation acceleration+audio. Given that the position estima-
tion we get from the WLAN access point is quite coarse, it
would be interesting if better results can be achieved with a
finer positioning system.

Reducing the Number of Acceleration Sensors. As it
will not always be possible to place 12 acceleration sensors
on the user, we started to investigate which subsets of sen-
sors are useful.

In a first attempt, we calculated the scores for the 4 6-sets
of sensors upper body, lower body, right half, and left half of
the body. Overall, the recognition results remain in the same
order of magnitude as with all sensors. The personal inter-
ruptability is least affected. With 89.2%-89.9% the recog-
nition score is only at most 1.3% smaller than for all sen-
sors. The recognition scores for the social interruptability
are very good with 92.3%-96.4% and still better than those
for the personal interruptability. Interestingly, the right side
of the body seems to be less informative than the left. We
credit this to the fact that the user, being right-handed, per-
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Figure 8. Recognition Scores for Audio, Loca-
tion and Small Sets of Acceleration Sensors

forms more diverse actions with his right side and that thus
the data has greater variance on the right side.

The second investigation is driven by the possibility to
place the sensors (see Figure 8). We chose four locations:
the left wrist, left hip and both shoes. The left wrist is the
place where most people wear their watches where an ac-
celeration sensor can easily be embedded [7]. The shoes
are an ideal place to place self-powered acceleration sen-
sor nodes [10]. The hip sensors can for example be em-
bedded in a belt. The results for audio+location and au-
dio+location+all acceleration are given for comparison.

Adding a single acceleration sensor on the wrist to au-
dio and location sensors already increases the recognition
score from 80.8%/81.6% to 84.8%/84.7% for social and
personal interruptability respectively. Adding the sensors
on the shoes or on the hip increases the score only by an-
other 1.0%-4.4%.

By combining all three sensor positions (wrist, hip, and
shoes) the recognition score increases considerably, espe-
cially for the social interruptability (to 95.9%, which is only
2.3% worse than the result for all sensors). The personal in-
terruptability with a score of 88.3% also comes within 2.2%
of the result for all sensors. This is the best 4-set we found.

Experience Sampling. For evaluation of the system on
real-world data, we have recorded a large data set of two
entire days (of 8 hours each) of acceleration, audio, and lo-
cation data. We have sampled the users interruptability at
regular intervals. During the two days of data, we have an-
notated 2.5 hours continuously, which are used for training
the tendencies. We have interrupted the user 2-3 times per
hour using an audio alarm, and have asked him to annotate
his interruptability for that specific moment. We have thus
obtained 54 interruptability samples.

Out of the 54 interruptability samples, the social inter-
ruptability was correctly classified 53 times (corresponding
to 98.1% of the cases). For the personal interruptability
however, only 44 samples, or 81.5%, were correctly classi-
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fied. 9 out of these 10 samples are all from the same activity
(namely, ‘having a coffee’) and in fact constitute all occur-
rences of that activity in the 54 samples. This suggests that
the low performance for the personal interruptability is due
to an under-representation of ‘having a coffee’ in the train-
ing set. Adapting the model online by relearning low-level
contexts and tendencies could eliminate that problem.

6 Conclusion and Outlook

Estimating the interruptability of users is an important
problem, especially for future mobile and wearable appli-
cations. We have introduced a model of interruptability in
which we distinguish the users’ personal and social inter-
ruptability. We show that this distinction makes sense and
that this model can also be used for automatic recognition
from wearable sensor data.

As the first contribution, we have verified in a user study,
that the distinction between social and personal interrupt-
ability is necessary. 24 subjects were asked to rate the so-
cial (for a ringing phone only) and personal interruptability
(for a ringing and a vibrating phone separately) for 47 dif-
ferent situations (twice per situation). The results show, es-
pecially for the vibra condition, that indeed there is a signif-
icant difference between the social and personal interrupt-
ability. Furthermore, the study has shown that people are
quite different in the way they assess the interruptability.
Thus, future systems should be able to adapt to the user.

As second contribution, we introduce a scalable scheme
for estimating the social and personal interruptability of
the user from sensor data obtained from wearable sensors,
which scales with the number of contexts and sensors, al-
lowing for online adaption of the system.

The third contribution is a novel hardware platform that
overcomes the limitations of our previous work, wich only
used 1 2D acceleration sensor. The novel platform now uses
12 3D acceleration sensors worn on the users body. A mi-
crophone worn on the users collar and a location estimate
are also included.

We have evaluated the approach on three different data
sets. The comparison of old and new approach shows
that the novel approach performs better than the previous
one (increasing the recognition rate from 86%/92.7% to
96.2%/97.75% for social and personal interruptability). The
second data set is 3.5h long and continuously annotated.
The results are very similar (97.2%/90.5%), even though
the data is considerably more complex and varied. We have
tried to identify smaller sets of acceleration sensors and
found the set audio+location+left wrist+hip+both feet to
perform nearly as well as all sensors together. Finally, we
have recorded 2 entire days of data (of 8h each), in which
we have sampled the user’s interruptability 2-3 times per
hour. While the social interruptability is well recognized

(with 98.1% recognition score), the personal interruptabil-
ity achieved only 81.5% recognition score. We believe this
is due to insufficient training examples. This issue should
be solvable by learning the model online from the experi-
ence samples.
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