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ABSTRACT
Experience sampling has been employed for decades to col-
lect assessments of subjects’ intentions, needs, and affective
states. In recent years, investigators have employed auto-
mated experience sampling to collect data to build predic-
tive user models. To date, most procedures have relied on
random sampling or simple heuristics. We perform a com-
parative analysis of several automated strategies for guiding
experience sampling, spanning a spectrum of sophistication,
from a random sampling procedure to increasingly sophisti-
cated active learning. The more sophisticated methods take
a decision-theoretic approach, centering on the computation
of the expected value of information of a probe, weighing
the cost of the short-term disruptiveness of probes with their
benefits in enhancing the long-term performance of predic-
tive models. We test the different approaches in a field study,
focused on the task of learning predictive models of the cost
of interruption.
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INTRODUCTION
Interest has continued to grow on the use of machine rea-
soning and learning to enhance human-computer interaction.
Several systems have relied on the use of statistical user
models to predict states of the user or context, e.g., see [1,
6, 8, 9, 10, 12]. One of the key problems in construct-
ing such predictive user models is the collection of labeled
data, where labels contain information about hidden states
of computer users such as their interruptability, intentions,
needs, and affect. In some cases, labels need not be assessed
through the explicit engagement of users; rather, states can
be associated in an implicit manner with other sensed data
via a process of in-stream supervision. As an example, in-
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Figure 1. Overall flow of automated experience sampling methods. Key
differences among methodologies center on the probe criterion.

stream supervision has been used to construct predictive mod-
els for user goals and the timing of actions in the mixed-
initiative Lookout system [6]. The system seeks to identify
users’ intentions by observing their interactions with the Mi-
crosoft Outlook application, making the assumption that a
calendaring action, occurring within a period of time after
an email message is viewed, associates the content of the
message with the goal of reviewing the calendar.

Unfortunately, in-stream supervision is often infeasible; users
more typically must be engaged to provide information about
hidden states in a manual manner. Experience sampling met-
hodologies (ESM) have been used for acquiring real-time la-
bels of situations. With ESM, people are asked, in the course
of their normal activities, to reveal hidden states required to
build a case library for machine learning. While providing
an effective way to label cases, ESM can be disruptive and
frustrating for users.

Figure 1 shows the overall flow of automated ESM. The
ESM systems are provided with access to a stream of data
about the user and/or context and couple the sensed infor-
mation with user feedback accessed via the probes to pro-
vide insights to researchers or to construct predictive mod-
els. Automated ESM systems continue to make decisions
as to if and when to issue a probe to users, based on some
probing criterion. The probing criterion lays at the heart of
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the method: changes in the criterion influence the behavior
of the system and the quality of the predictive models con-
structed from the collected data over time.

In the past, relatively simple policies have been used to guide
experience sampling. Most experience sampling to date has
been based on random sampling. With random sampling,
the times for probing for feedback from subjects is random-
ized. Variants of random sampling have included methods
that allow users to modulate the density and distribution of
probes via controls that can be used to adjust parameters of
the random sampling [8]. Landmark-based heuristics have
also been investigated where predefined contextual cues are
used to herald an appropriate time for a probe. For example,
specific sensed events or locations have been used as trig-
gers for probes [5, 11]. Landmark-based ESM require that
triggering events are known in advance and that the appa-
ratus has a reliable means for detecting those events. More
sophisticated ESM systems can use predictive models con-
structed from the data collected in earlier probes to guide de-
cision making about if and when to probe subjects for new
assessments. These systems have machinery for deliberating
in an explicit manner about when to probe, promising to re-
duce interactions while maximizing the value of information
being acquired with each probe.

We have pursued a comparative analysis of four different
approaches to automated experience sampling, spanning a
spectrum of sophistication. In addition to a randomized pol-
icy, we consider three methods that employ inferential mech-
anisms which seek to identify the best times for real-time
engagement of subjects for their assessments of state. In dis-
tinction to the randomized policy, these methods consider an
economics of information and disruption; they are designed
to be selective about collecting information from users, and
seek to maximize the value of probes. We have been par-
ticularly interested in understanding the potential value of
employing decision-theoretic methods to enhance ESM by
balancing the costs and benefits of probes, via reasoning
about the current state of subjects and the world, and per-
forming computations of the expected value of the informa-
tion gleaned from a real-time probe.

In the next section, we review the four ESM policies that
we shall study. Then, we discuss as a testbed domain the
challenge of building systems that can learn personalized
models with the ability to predict the cost of interruption
for a user based on desktop activity, calendar information,
and such contextual information as ambient acoustical sig-
nals and wifi signals.

We extend prior work on BusyBody [8], a system that was
first introduced with an ESM method that performs random
probing, optionally modulated by parameters provided by
users. Then, we describe the details of a two-week field
study exploring the use of the different ESM methods by
people with a variety of roles at our organization. We per-
form a comparative analysis including summaries of the at-
tributes of the four different ESM methods, such as the quan-
tity and dynamics of probing over time, the quality of the
models constructed, and the overall experience with the meth-

Method Considers Considers Adapts To
Error Cost Probe Cost Data Dynamics

Random × × ×
Uncertainty X × ×
DT X X ×
DT-dyna X X X

Table 1. Selective Experience Sampling Methodologies.

ods. We also seek in a post-study survey to understand how
recent experience with using the different systems influences
general feelings subjects hold about systems that learn from
them. Finally, we summarize the results, discuss the implica-
tions of the findings, and present future research directions.

METHODS FOR GUIDING EXPERIENCE SAMPLING
We shall explore four experience sampling methods, each
harnessing a different policy for probing subjects as follows:

• Random probe: Probes appear at random times.

• Uncertainty probe: A predictive model, constructed with
data collected so far, is harnessed to generate probes for
situations associated with the most uncertainty.

• Decision-theoretic probe (DT): Based on the probabili-
ties inferred with the current predictive model about the
user’s internal state, the expected value of information is
computed, weighing the costs and benefits of the probe.
When the value is positive, a probe is recommended.

• Decision-theoretic dynamic probe (DT-dyna): The dec-
ision-theoretic probe approach is extended with a method
for addressing the potential unmodeled dynamics of the
context. With this extension, the system continues to de-
liberate about removing and caching assessed states for
later reconsideration, allowing for the implicit construc-
tion of multiple models across time with changes in con-
text that are not represented explicitly.

The uncertainty, DT, and DT-dyna probes are examples of
selective ESM probing strategies in that they attempt to use
inferential methods to determine the best time to assess in-
formation from users. We used the degree of uncertainty as
the criterion in one of the policies because it is the simplest
active-learning policy we know and it has been employed
in numerous studies of active learning within the machine-
learning community [15, 20, 21]. At the core of the two
more sophisticated ESM methods, DT and DT-dyna, are dec-
ision-theoretic probing policies. These methods endow the
ESM system with the ability to balance the cost of probing
users for labels of states with the benefits of the increased
accuracy of models. The decision-theoretic methods con-
sider uncertainties and preferences, and compute a formal
quantity called the expected value of information by con-
sidering the costs associated with the accurate versus erro-
neous functioning of the predictive model in downstream
uses of the predictive system. DT and DT-dyna employ es-
timations about how much better the predictive model will
perform with information that is expected to come from the
additional probe. This value of information is based on a
weighing of the expected costs and benefits of the informa-
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Figure 2. BusyBody probe for user feedback. When running in a bi-
nary modality, the probe inquires about whether the user is highly non-
interruptible versus in another state.

tion gleaned from the probe, given the current inferred un-
certainties about a subject’s response to the probe. The com-
putation considers the cost of interrupting a user to inquire
about a situation or state, and how the new data point will
enhance the downstream performance of a predictive model.

The DT-dyna approach introduces additional machinery that
enables the system to be flexible should aspects of the con-
text change in ways that are not necessarily recognized by
the model. For example, a laptop user may be working in
very different settings, such as home, office, and conference
room, and these different venues may not be encoded ex-
plicitly with predefined variables sensed and used by the
system. With DT-dyna, the system has the ability to con-
tinue to deliberate about whether to include in its construc-
tion of predictive models each of the cases it has learned so
far from users. In the approach, cases, created by joining
probes with contextual data may be removed, cached, and
reconsidered at a later time. The decision-theoretic dynamic
probe ESM methodology continues to reason about forget-
ting and caching, versus remembering data acquired from
probes. This dynamic approach to admitting data into the
learning of models allows the system to respond locally in
a flexible manner to multiple contexts. Technical details of
this approach are described in [13]. In brief, the DT-dyna
method employs a variant of value of information called the
value of forgetting. When integrated into the cycle of reflec-
tion about the best points to gather, the value of forgetting
allows a system to learn in an efficient manner in potentially
dynamic environments—contexts where unmodeled exoge-
nous variables lead to changes in the relationships among
observations and states of interest.

In terms of computational requirements, random probing sim-
ply requires the generation of a random number which is
compared against a preset threshold. Using the uncertainty
criterion requires that we use the available predictive model
to compute the posterior probabilities of the current state of
the target inference—the cost of interruption in the case of
BusyBody’s domain. The complexity of inference depends
on the learning and reasoning methodology. For the infer-
ential methodology (expectation propagation [18]) we have
used in this study, the complexity is O(d2), where d is the
dimensionality of the data. The DT and DT-dyna approaches
require repeated application of the predictive model on a
buffer of previously encountered data points. In this work
d is 48 and the computation with models of this dimension-
ality did not provide significant overhead.

DOMAIN: LEARNING THE COST OF INTERRUPTION
The problem domain of learning the cost of interruption is
an especially interesting task for experience sampling; the
predictive model—being constructed for use in applications
that balance the context-sensitive cost of alerts with the value
of increased awareness of messages—provides an ESM pol-
icy with inferences about the cost of interrupting users with
probes aimed at enhancing the predictive model. As the pre-
dictive model is learned incrementally, the adaptive ESM
methods have access to estimates of the expected cost of
probing a user at different times and can make use of this
estimate in deliberation about if and when to probe for addi-
tional data.

The work on BusyBody was an early effort to explore the
use of automated ESM in a closed-loop manner for learning
models for predicting the cost of interrupting people, based
on observations of user activity and context [8]. Other work
on learning about interruptability includes [10, 7, 3]. Busy-
Body can operate in different training modalities. In its bi-
nary assessment mode, users are probed with a binary deci-
sion task; they are asked to indicate if they are highly non-
interruptable versus in states of lower cost of interruption.
In use, the BusyBody system continues to generate an ex-
pected cost of interruption by computing the probability that
the user is highly non-interruptable. At run-time, the system
provides other applications with a current expected cost of
interruption or with information on when the expected cost
of interruption exceeds a user-set threshold.

When BusyBody is in training mode, the system intermit-
tently probes users with a pop-up query, requesting an as-
sessment of the computer user’s current or recent interrupt-
ability. The initial version of the system probed users at
random times, constrained to an overall maximum rate and
inter-probe interval as set by users via a set of controls avail-
able on the BusyBody probe pop up. Figure 2 shows a re-
quest by BusyBody for input that is used when the system is
running in a binary-hypothesis modality.

Details about the original BusyBody are described in [8].
BusyBody employs an event infrastructure that logs desktop
activities including such activities as typing, mouse move-
ments, windows in focus, recent sequences of applications
and window titles, and high-level statistics about the rates
of switching among applications and windows. The sys-
tem also considers several kinds of contextual variables, in-
cluding the time of day and day of week, the name of the
computer being used, the presence and properties of meet-
ings drawn from an electronic calendar, and wireless signals.
The system employs a conversation-detection system, using
a module that detects signals in the human-voice range of the
audio spectrum. Responses to probes about the current cost
of interruption are stored, along with the sensed evidence.
The system takes such assessments as labels, and builds a
rich case library by joining the labels with a large vector of
evidence about computer activity. This case library is used to
construct models that can predict the expected cost of inter-
rupting the user at different times, based on observed activ-
ity at the computer. Bayesian structure search was used for
learning inferential models in the original BusyBody work.
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Later versions of BusyBody [13] employed Gaussian Pro-
cess classification because they allow for efficient computa-
tions of the value of information, an analysis that requires
multiple steps of learning and inference.

For our field study, we make use of a version of BusyBody
using the default randomized probe developed initially for
the first version of the system. In addition, we created three
new versions of Busybody, each using a different ESM as
described earlier.

RESEARCH IN ACTIVE LEARNING
Before moving on to a field study, we shall briefly review
relevant research in active learning. Active learning is an
area of research in machine learning. Active learning algo-
rithms are employed to make decisions about the next unla-
beled case within a library of unlabeled and labeled cases,
that should receive a label (e.g., via an active probe), so as to
maximize the learner’s ability to classify the data.

Variants of Active Learning
Most work in active learning assumes a pool-based setting
where the set of labeled and unlabeled data are provided
and an algorithm selects the points from the pool to query.
Various heuristics have been employed as criteria for active
learning. Within the Gaussian Process framework, the ex-
pected informativeness of an unlabeled data point has been
used [14, 16]. For SVMs, Tong and Koller [21] explored
the criterion of minimizing the version space to select the
unlabeled points to query. Other pool-based methods have
been based on a combination of active learning with semi-
supervised classification [17, 19, 22]. Shen and Dietterich
[20] have used active learning with an entropy-based mea-
sure to learn predictive models from noisy data.

Stream-based learning has been less explored than pool-based
scenarios. In stream-based settings, the learner views a con-
tinuing series of unlabeled points and can make a decision
at each step to determine whether to query for the label of a
newly presented unlabeled data point. Many of the existing
approaches to stream-based active learning can be viewed
as adaptations of pool-based active learning strategies to the
stream-based scenario. As an example, an approach to stream-
based active learning relies on the selection of unlabeled
points that the existing classification is most uncertain about
[15]. In another approach, researchers have adapted methods
that consider the disagreement of a committee of classifiers
to the stream-based scenario [4]. Similarly, stream-based ac-
tive learning for linear classifiers has been proposed [2].

Note that all of these approaches seek to address the chal-
lenge of adding points to the active set; none of the meth-
ods tackles the issue of eliminating irrelevant, outdated data,
and recalling older data that might become relevant. Further,
none of the prior methods are targeted at optimizing the cri-
terion upon which the system is ultimately evaluated.

DECISION-THEORETIC EXPERIENCE SAMPLING
We harness recent work on decision-theoretic active learning
[13] for adaptive ESM. The method identifies the most valu-
able unlabeled instances to label by considering the costs of

labeling cases and the cost of misclassification. The method
also addresses the challenge of learning in a dynamic en-
vironment and identifies when the current predictive model
conflicts with the current situation. Specifically, the method
has the ability to forget and cache older labeled data points
in an automated manner via the computation of the expected
value of forgetting (VOF) previously labeled instances. Sim-
ilarly, the method also considers the possibility that cases
cached earlier might again become relevant in the current
context. Cases are reconsidered by computing the expected
value of recall (VOR). The cycle of forgetting and recalling
cases can be valuable for learning predictive models within
domains that have poorly characterized non-stationarities.
Non-stationarity may be founded in “evidential incomplete-
ness”—the absence of consideration in the system of im-
portant evidential distinctions that could capture important
indicators of change over time. Examples of critical exoge-
nous variables that may be absent in a system for predicting
a user’s interruptability include the user’s appointment sta-
tus and the day of week. Busybody considers these variable.
However, if the system had no knowledge of meetings or of
the distinction between weekdays and weekends, the system
might find models learned for some settings sometimes per-
form poorly in other settings for unknown reasons. Moving
beyond salient examples of incompleteness, it is safe to say
that any learning and reasoning system will likely rely on a
representation of the world with “blindspots”—a representa-
tion that is incomplete in important ways.

FIELD STUDY
We shall now describe the field study that we conducted to
compare the different automated experience sampling meth-
ods. Our aim was to study how different policies for probing
would affect the behavior and performance of Busybody in
a real-life working environment.

Details of the Probing Policies
We sought to compare the four different policies described
earlier. Specifically, we built the four different versions of
BusyBody to probe the user for labels and to update the pre-
dictive model of the user’s cost of interruption. The imple-
mentation details are as follows:

• Policy 1: Random probe. This policy enables BusyBody
to probe the user for their cost of interruption in a random
manner. The default rate was set to four probes an hour
and users had the ability to change this rate.

• Policy 2: Uncertainty probe. According to this policy,
Busybody issues a probe whenever the probability of clas-
sifying the state as busy is between 0.25 and 0.75.

• Policy 3: Decision-theoretic probe (DT). For this pol-
icy, we assume that the cost of classifying the user state
as not-busy when she is busy (R12) 2 USD and cost of
classifying the state as busy when she is not (R21) is 1
USD. Similarly, the cost of a probe when the user is busy
(C1) is 2 USD and the cost when not busy (C2) is 1 USD.
Furthermore, the buffer and the optimization horizon con-
sider the past 30 minutes of data and the buffer is updated
in 1 minute.

CHI 2008 Proceedings · Knowledge Elicitation April 5-10, 2008 · Florence, Italy

660



• Policy 4: Decision-theoretic dynamic probe (DT-dyna).
The parameters for this policy were the same as the ones
for Policy 3, except that the framework incorporates the
caching and recalling functionality to adapt to the poten-
tial non-stationarity of the domain.

Participants
We recruited 44 participants from our organization. The sub-
jects had roles that can be classified as: 1) software devel-
oper, 2) researcher, 3) program manager and 4) group man-
ager. A group manager differs from a program manager in
that the group manager manages a team as part of her job,
whereas program managers are individual contributors. The
breakdown of the participants is described in Table 2.

The subjects were randomly assigned to one of the four dif-
ferent conditions. At the beginning of the study, each ver-
sion of BusyBody was assigned to 11 subjects. Out of the
44 participants, three subjects failed to install BusyBody as
directed. Thus, we started with 41 subjects. Out of these
41 participants, one subject had a computer hardware fail-
ure and dropped out of the study. Three other subjects did
not provide the data log files because of their work commit-
ments. Thus, the results we report are based on our observa-
tions on the remaining 37 subjects.

Duration of the Study
The study spanned two weeks and the participants were given
a small gratuity for their time as well as a promise to view a
report of the analysis of when they were the most busy and
free based on the analysis of the data collected during the
study.

Setup and Equipment
BusyBody was installed on the computers of subjects. All
of the computers were Intel architecture machines running
either Windows XP or Vista. The computers were primar-
ily used by subjects for their work throughout the course of
the study. The participants also had the ability to access the
desktop remotely from other machines and such access did
not negatively influence the ability to collect probes, as well
as data about activity and context, per the design of Busy-
Body.

Procedure and Design
The participants were provided with written instructions on
how to install Busybody on their system. Following the in-
stallation, we did a quick check to insure that the system was
properly installed.

The subjects were told that the BusyBody probes would ap-
pear occasionally with an associated audio chime, and that
they could provide feedback about their sense for their cur-
rent cost of interruption at that time. Subjects were asked
to continue their regular office work on the desktop with the
installed BusyBody for a period of two weeks.

In an attempt to standardize the definition of “busy” per the
question that the BusyBody probe was asking them to an-
swer when in binary mode, we instructed the subjects as fol-
lows:

Condition Developer Researcher Program Group Total
Manager Manager

Random 4 2 1 2 9
Uncertainty 1 4 3 1 9
DT 2 2 4 1 9
DT-dyna 3 2 3 2 10

Table 2. Details of the subjects who participated in the study.

“Please only click Busy if the cost of stopping immedi-
ately is such that you wouldn’t stop what you are do-
ing right away and review the alert, even if you knew
that the incoming message contained urgent informa-
tion. Otherwise, click Not Busy.”

Participants were not informed about the nature of the dif-
ferent experience sampling methods, nor was information
provided that multiple versions of the system were being
tested. Beyond the probes being generated by the ESM pol-
icy, BusyBody randomly probed at a rate of two probes per
hour to collect validation data. The goal of this random prob-
ing was to gather data to test the performance of the system.

The Busybody prototype on each machine collected the data
and probed the participants over two weeks. At the end of
the study, the data was transmitted in the form of a set of
text files. We analyzed the data to compare the performance
among the four methods. Finally, at the end of the study,
the participants were asked to complete a survey where we
asked questions related to their experience with the Busy-
Body system and more general assessments of reflections
about working with tools that learn from users via experi-
ence sampling. We describe the observations, data analysis,
and the results below.

RESULTS
The goal of the automated ESM approach is to build a pre-
dictive model that has maximal classification performance
and to do this with minimum disruption. Hence, to charac-
terize the performance of the ESM probing policies, we an-
alyze both the probing behavior over the two-week study, as
well the classification performance at different times—often
referred to as learning curves.

Analysis of Probing Behavior
We first compare the number of probes issued by the dif-
ferent ESM methods. The number of probes captures how
much supervision the learner requested from subjects. The
amount of disruption caused by the ESM system scales with
the number of probes issued by the learner; thus, minimiz-
ing the number of probes is a desirable goal of an automated
ESM system.

Figure 3 shows the statistics for the number of probes issued
per day for the different policies. The numbers are averaged
across all subjects for each ESM system. The highest num-
ber of probes was issued by the random policy (21.35 probes
per day), followed by the policy based on uncertainty (19.73)
and decision-theoretic probing (16.17). The lowest num-
ber of probes were issued by the decision-theoretic dynamic
probing (4.65). A one-way Analysis of Variance (ANOVA)
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Figure 4. The average proportion of probes that were tagged as busy
for different conditions. Compared to random probing, the DT-dyna
probing methodology issued significantly fewer probes while the users
were in a state they labeled as busy. The error bars show the standard
error.

was performed on the data. A main overall effect of probing
policy was observed, F (3, 33) = 7.01, p = 0.001. Paired
comparisons using the Tukey procedure showed that the num-
ber of probes issued per day by the DT-dyna policy was sig-
nificantly less than those issued by the DT (p = 0.037),
Uncertainty (p = 0.004) and Random (p = 0.001) poli-
cies. The significantly lower number of probes for DT-dyna
is likely based in the power of the caching and recalling ca-
pabilities of this method, enabling the predictive model to
be flexible and adaptable to the subtle dynamics of the do-
main; the model appears to achieve good performance by
adjusting itself to the current context without requiring addi-
tional feedback from the user. The uncertainty-based prob-
ing and decision-theoretic probing rely on the current state
of the model to issue new probes; they consequently seemed
to issue smaller numbers of probes than the random policy
that is oblivious to the state of the world and user.

Next, we plot the percentage of responses labeled as busy.
The cost of probing a user varies over time. In general,
a decision-theoretic probing policy should be generally ex-
pected to issue fewer probes when probing is expensive. Fig-

ure 4 shows the percentage of busy responses. The DT-dyna
probing generates the lowest number of probes (46.63%)
when the user was in the busy state. Similarly, on aver-
age the Uncertainty (63.52%) and DT methods (62.91%) is-
sue lower numbers of probes in the busy state when com-
pared to Random (73.08%). A one-way Analysis of Vari-
ance (ANOVA) on the data showed a main overall effect of
probing policy, F (3, 33) = 2.89, p = 0.05. Further, paired
comparisons using the Tukey procedure showed a significant
difference between DT-dyna and the random probing policy
(p = 0.03). No other effects were observed in other pair-
wise comparisons. Both decision-theoretic probing policies
consider the cost of probing in deciding when to probe; their
behavior with disrupting subjects less was in line with the
intent of their machinery for doing cost-benefit analysis of
the costs and benefits of probing at different times.

We also investigated the change in probing behavior over
time for the different methods. Figure 5(a) shows how the
number of probes issued per day change as data accrues over
time for two subjects that were being probed by the Random
and DT-dyna probing methodologies. The random-probing
policy does not take into account any information about the
state of the world and the model; thus, the probing behavior
shows minimal changes. In contrast, for the DT-dyna prob-
ing methodology, the number of probes issued decreases sig-
nificantly over time. The probing policy is aware of the state
of the world as well as the model; as the system learns over
the time, the number of probes issued per day decreases.

Figure 6(a) displays plots of statistics averaged over all the
subjects within each condition. A similar trend is expressed
over the averaged values for the groups of users using the
policies. These results highlight the potential benefits of em-
ploying decision-theoretic dynamic probing. By considering
the current state of the user, the current predictive model,
and the information acquired in the past, the DT-dyna pol-
icy refrains from issuing a new probe unless the benefit in
performance gain is greater than the cost of the disruption.

We explored the evolution of the system’s behaviors over
time. Returning to the two subjects above, Table 3 shows the
predictive accuracy on the test points seen so far, as well as
the total number of probes issued at the end of weeks 1 and
2 of the study. As demonstrated by the data, DT-dyna issues
a very small number of probes in the second week as it al-
ready has acquired most of the information that it infers (per
the decision-theoretic machinery) it needs in the first week.
Table 4 shows these statistics averaged over all the subjects
and for all of the four probe conditions. Note that the ta-
ble also shows that, on average, the two decision-theoretic
methods (DT and DT-dyna) issue far fewer probes during
the second week. The Uncertainty policy also issues on av-
erage fewer probes in the second week when compared to
Random. To judge the significance of these numbers (Table
4), we performed a one-way ANOVA analysis on the num-
ber of probes. A main effect was observed for both weeks:
F (3, 33) = 4.85, p = 0.007 (week 1) and F (3, 33) = 5.80,
p = 0.003 (week 2). Follow-up tests were conducted to eval-
uate pairwise differences among the means. As the variances
were not homogenous, we conducted the post-hoc tests us-
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Figure 5. Variation in (a) number of probes issued per day and (b) recognition accuracy achieved per day with time for two subjects in the study.
The DT-dyna probing methodology reduces the number of probes issued as time progresses while improving the recognition accuracy. Conversely,
the random probing methodology continues to probe the user at unchanging rates.
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Figure 6. Variation in (a) number of probes issued per day and (b) recognition accuracy achieved per day with time. The averages are computed
over all the subjects in a condition. The DT-dyna probing methodology showed fewer probes as time progressed while yielding a higher recognition
accuracy. The random-probing methodology continues to probe the user at relatively high rates.

AT WEEK 1 AT WEEK 2
Method Accuracy Total Accuracy Total

Probes Probes
DT-dyna (Sub 13) 80.20 17 87.13 18
Random (Sub 6) 55.26 60 64.21 98

Table 3. Summary of the cumulative performance on the validation
data after one and two weeks of usage. The averages are computed
across the subjects in each ESM probing condition.

ing the Dunnett’s C test. For both weeks, the tests showed
that there is a significant difference between the mean of the
total number of probes for DT-dyna and that of the other
three policies. No other significant effects were observed.
In summary, when compared to the other methods, the DT-
dyna approach uses the least number of probes to attain a
similar classification accuracy.

Analysis of Performance
The ultimate goal of automated ESM probes is to learn an
effective predictive model. We now explore the classifica-
tion performance of the models built with the data collected

AT WEEK 1 AT WEEK 2
Method Average Mean Total Average Mean Total

Accuracy Probes Accuracy Probes
DT-dyna 67.35 35.90 69.80 36.00
DT 70.94 145.78 70.98 169.11
Uncertainty 60.70 172.44 62.83 207.56
Random 63.09 174.11 65.76 256.22

Table 4. Summary of the cumulative performance on the validation
data after one and two weeks of usage. The averages are computed
across subjects.

by the different ESM probing policies. We examine learning
curves that capture how the system’s classification perfor-
mance evolves over the time. Figure 5(b) shows the accuracy
achieved per day over the time for the two individual sub-
jects we have been focusing on. The DT-dyna policy shows
better recognition performance even during the early phase
of the study. As the probes issued by the DT-dyna policy are
targeted to gather information inferred to be the most valu-
able for enhancing predictions, the system achieve a good
performance level with fewer probes, and thus interruptions,
for the user.
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Again, we plot these statistics averaged over all the subjects
in each condition (see Figure 6(b)). We can see that a sim-
ilar trend is expressed over the averaged values. These re-
sults highlight the benefits of the decision-theoretic dynamic
probing. We can combine the observations from Figures
6(a) and (b) and Figures 5(a) and (b) to conclude that us-
ing decision-theoretic experience sampling can help achieve
a good performance level at lower probe costs for this do-
main. The methods will likely have similar attributes for
other domains given the general principles underlying the
cost-benefit analysis that lies at the heart of the ESM prob-
ing methodology.

By looking at the evolution of the system from one week to
another for the two subjects (Table 3), we can see a gain in
total recognition accuracy for all of the policies. Similarly,
examining the statistics averaged over the multiple subjects
in different conditions (Table 4), shows that there is an im-
provement in recognition accuracy over time for all of the
approaches. We conducted a one-way Repeated-Measures
ANOVA and observed that the difference in accuracy for
week 1 versus week 2 was significant for Random probing
(Wilk’s Λ = 0.576, F (1, 9) = 6.62, p = 0.03). The differ-
ence in accuracy for week 1 versus week 2 was not signif-
icant for rest of the policies. These results suggest that be-
sides random probing, the ESM methods do not gain much
performance from probing in the second week. This finding
is likely explained by the fact that the probing decisions in
these policies are guided by data seen in the past; leveraging
data collected earlier helps the methods to better use down-
stream probes more efficiently than the way that collected
data is used by the random strategy.

SURVEY
Following the study, we asked all the users to take a survey.
The survey was designed to acquire information about the
participants experience with the BusyBody system and to
see if the experience with the different ESM methods might
have had influence on their general feelings about employing
experience sampling within adaptive applications. We note
that there was no way for the subjects to distinguish between
an authentic probe triggered to collect the label or a valida-
tion probe issued to collect the test points; consequently, the
responses to the survey considers all the probes experienced
by the users. Out of the 37 subjects, only 1 subject failed to
submit the survey.

Specifically, we asked the users to rate how annoying the
system was using a 10 point scale (1-not at all and 10-highly
annoying). Figure 7 summarizes the responses to this ques-
tion. An independent t-test (DT-dyna vs. rest) was con-
ducted to evaluate the hypothesis that the BusyBody system
with DT-dyna policy was assessed as less annoying than the
BusyBody that employed any of the other three policies. The
test was significant, t(34) = 2.04, p = 0.049, suggesting
that there is a considerable difference between the annoy-
ance for the DT-dyna versus the other probing policies.

We also asked the participants to estimate how often they
recalled the probe to have appeared. Figure 8 summarizes
the responses. Again, DT-dyna was perceived to have issued
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Figure 7. Average of the scores reported by the users on how annoying
BusyBody probe was (1-not at all, 10-highly annoying). The average
score attained by DT-dyna is significantly less than the score for the
other probing policies. The error bars show the standard error.
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Figure 8. Average of number of probes per hour perceived by the users
of the different BusyBody probing policies. The version of BusyBody
that used DT-dyna probing was recalled as having significantly fewer
numbers of probes than recollections about the other probing policies.
The error bars show the standard error.

a smaller number of probes than the other policies. This
effect was identified as significant using the independent t-
test (t(34) = 3.98, p = 0.008).

Long term vs short term deployment
One of the key challenges in building systems that interact
with humans is that the users and the context may change
constantly; such dynamism is a challenge for systems that
have only been allowed to learn during a pre-assigned train-
ing phase. However, users may be averse to a system that
learns continuously by probing similar to that used in Busy-
Body. We sought to explore users preferences about using
systems that employed ongoing selective probing. Specifi-
cally, we asked the participants if they thought that the sys-
tem would be better if the probing was limited to a well-
defined training phase.

Most of the participants (24 out of 36) in the survey speci-
fied a preference that the probing be limited to a short-term
period. However, we found that majority of the subjects who
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had leaned towards allowing a longer-term deployment of a
probing system (5 out of 11, see Table 5) had experienced
the BusyBody probe guided by the DT-dyna method. This
finding suggests that for long-term usage, automated ESM
methods that take into account the costs and benefits asso-
ciated with probes might be more acceptable than the ones
that are random. Having access to probing over extended
periods of time could allow systems to deliver higher perfor-
mance than those with a limited training period.

We found it interesting that two subjects who were not in
DT-dyna group explicitly requested a smarter probing method-
ology. One stated: “I would want something that did more
inference, and perhaps asked me for verification at select
times only.” The other participant said: “For this approach
to be effective, the probes have to be smart and not disrup-
tive or annoying. Whether a probe comes up or not should
be influenced by what you are doing on the machine rather
than a preset frequency.”

Is the training effort worth it?
We also explored in the survey how worthwhile the subjects
believed the training to be for the goal of building systems
that could predict their cost of interruption. Specifically,
were they willing to put up with the probing to train a sys-
tem that could eventually become good at inferring their in-
terruptability?

Most of the subjects answered favorably (22 out of 36). Again
a large number of subjects who said yes (see Table 5) were
probed using the DT-dyna policy. We were impressed how
much influence the subtleties of a training procedure could
have on the longer-term perceptions of the overall value of
building and using adaptive systems.

Note that for this specific question we received more positive
responses (8 yes, 1 no) for the Uncertainty policy than for
DT-dyna (7 yes, 2 no). The difference here is insignificant
and does not imply that users believe that the Uncertainty
policy is better appreciated than DT-dyna; they were answer-
ing a question more generally about the potential value of
investing in the training of a system that could provide long-
term payoffs.

DISCUSSION
Experience sampling methods can be disruptive and, thus,
frustrating, especially when the users are interrupted to pro-
vide training input over a long period of time. One of our
aims was to develop and test methods that could minimize
the disruption and annoyance associated with such systems
by using information available to selectively query about the
most valuable probes and to consider users’ states of inter-
ruptability in an ongoing manner as data is collected.

Beyond the quantitative results, the results of the qualitative
evaluation, suggests that probing procedures that take into
account the data dynamics, user state, and the cost of prob-
ing can provide a way automate ESM in a manner that will
be acceptable to users. When compared to the commonly
used random probing policies, the annoyance levels of the
users were lower when the ESM system probed in a manner

Question: Would the system be better if the probing was
simply limited only to a training phase of, say, a few days?

Method Yes No No Response
DT-dyna 5 5 0
DT 6 3 0
Uncertainty 9 0 0
Random 4 3 1

Question: Would the training effort required to learn how
to predict your interruptability be worth it to build a system
that, when running, would work on your behalf to minimize
interruptions?

Method Yes No No Response
DT-dyna 7 2 1
DT 3 5 1
Uncertainty 8 1 0
Random 4 3 1

Table 5. Responses to survey questions.

that balances the performance gain and the cost of the inter-
ruption. Furthermore, we believe that the ability of the DT-
dyna approach to adapt to the changing data dynamics and
context switches is a valuable feature; the method enables an
ESM probing system to harness all prior data before seeking
out new information from the user. This in turns results in
significantly fewer probes—a behavior that we found to be
associated with a higher tolerance by the users.

We note that annoyance of subjects is a subjective assess-
ment which might correlate with other variables that are un-
modeled by the system. For instance, one of the participants
wrote the following in the survey: “I did notice a correspon-
dence between how annoyed I got with the probe and my ex-
ternal stress levels. In other words, if I’m less stressed or
anxious in general, the probe becomes less annoying. I think
this is more a reflection of how my psyche operates than a di-
rect reflection of probe though.” This comment suggests that
modeling the subjects affect, and perhaps other aspects of the
subject and context, might enrich the accuracy of the models
of the cost of the ESM probes. Such extensions would be
natural additions to the DT and DT-dyna methods.

CONCLUSION AND FUTURE WORK
We reviewed four different methods for automated expe-
rience sampling aimed at the task of assessing data from
users for building predictive user models. We performed a
field study and found that the capabilities of experience sam-
pling based on active learning using decision-theoretic prob-
ing were valuable for minimizing the numbers of probes and
maximizing the classification accuracy for the task of build-
ing predictive models of the cost of interruption. Key con-
cepts were illustrated in the context of the BusyBody system.

We believe that ESM methods that perform context-sensitive
cost-benefit analysis of the value of information for probing
decisions will be valuable for the use of machine learning
to personalize the performance of computing applications.
Beyond promising to enhance the performance of predic-
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tive models, the annoyance and disruption associated with
probes can be lowered significantly by using probing strate-
gies that pay heed to the user state and the costs associated
with disruptions.

On research directions, we are interested in characterizing
the value of different experience sampling policies for build-
ing predictive models for other target inferences and do-
mains. We are also pursuing several extensions and uses
of selective probing, including the application of decision-
theoretic strategies for extended-horizon and offline ESM.
With extended-horizon ESM, we relax the real-time con-
straint, and allow probes to be delayed until a less costly
time for an interruption. With delayed probes, the system in-
quires about past experiences, using landmarks, recordings,
or other means to refer to events at earlier times. Extended-
horizon probing policies should consider the cost of the po-
tential loss of fidelity of assessments with increasing delay.
With offline ESM, selective probing policies are applied to
reduce the effort required of subjects to label recordings of
prior activities. As an example, subjects in [7] were asked
to perform the tedious task of viewing several hours of over-
the-shoulder video recordings of their desktop activities and
to assess changes in their cost of interruption. Decision-
theoretic ESM could be applied in a sequential manner to
identify the portions of recordings that would be most valu-
able to assess, significantly reducing the time and effort re-
quired to perform such offline assessments.
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